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Both rich and poor countries generally regard industrial clusters as good for

productivity, growth, and development. The conventional economic wisdom dates

back to Marshall (1890)’s causes of agglomeration. Marshall’s first two causes,

resource and demand concentration, cause agglomeration to occur naturally with-

out any need for policy intervention, but or local externalities. His third cause,

positive external spillovers on nearby firms, could lead to too little agglomera-

tion, and this is used to justify cluster-fostering industrial policies. Many studies

find support for Marshall’s hypotheses.1 Influential work, including Marshall, has

also viewed industrial clusters as productivity-enhancing through pro-competitive

pressures they may foster (e.g., Porter (1990)). Therefore, perhaps we should not

be surprised that both advanced and developing economies adopt policies that

promote clusters.2

Industrial clusters may indeed be cost reducing and productivity enhancing,

but there is an even older concern – dating back to at least Adam Smith – that

gathering competitors in the same locale could instead lead to non-competitive be-

havior.3 It may seem paradoxical that multiple producers in the same area would

lead to noncompetitive behavior rather than increased competition, but close

proximity facilitates easy communication and observation, which are theoretically

(e.g., Green and Porter (1984), in the case of tacit collusion) and empirically (see

Marshall and Marx (2012) and Genesove and Mullin (1998), for example, which

document the behavior of actual cartels) associated with collusive behavior. They

may also foster the close relationships needed to support cooperative agreements.

Indeed, the most famous industrial clusters in the United States have all been

1See, for example, Greenstone, Hornbeck and Moretti (2010), Ellison, Glaeser and Kerr (2010), and
Guiso and Schivardi (2007), for recent evidence. In contrast, Cabral, Wang and Xu (2015) finds little
evidence of agglomeration economies in Detroit’s Motor City, however.

2There are currently an estimated 1400 global initiatives fostering industrial clusters.
3Smith (1776)’s famous quote: “People of the same trade seldom meet together, even for merriment

and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to
raise prices. It is impossible indeed to prevent such meetings, by any law which either could be executed,
or would be consistent with liberty and justice. But though the law cannot hinder people of the same
trade from sometimes assembling together, it ought to do nothing to facilitate such assemblies; much less
to render them necessary. (Book I, Chapter X).”
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accused of explicitly collusive behavior.4 Moreover, programs designed to enable

firm cooperation in other areas can also have the unintended side effect of encour-

aging collusion. Nevertheless, this possibility has been overlooked in development

policy.

This paper examines the hypothesis that non-competitive behavior is associ-

ated with geographic concentration and cluster policies. Specifically, we define

non-competitive behavior as behavior in either firm sales, hiring, or input pur-

chasing that internalizes pecuniary externalities on other firms. We make three

major contributions toward this end. First, we derive a novel, intuitive test for

identifying non-independent behavior for firms competing in the same industry.

Firms that are pricing independently consider their own market share but not

the market shares of other firms when setting markups. In contrast, firms in a

cartel internalize the impact of their pricing on the other cartel firms, so their

markups depend on the aggregate market share of the cartel. Second, using panel

data on Chinese manufacturing firms, we validate that our test can identify non-

competitive behavior in sales by applying our test to firms that are affiliates of the

same parent company. The test verifies that these firms are colluding, which we

would expect from firms with the same owner. Third, we show evidence of non-

competitive behavior at the level of organized industrial clusters in the Chinese

economy. Although we find limited levels of non-competitive behavior in the econ-

omy overall, it is four times higher in China’s “special economic zones” (SEZs)

than outside of them. Furthermore, we find that the levels of non-competitive be-

havior are also high in a set of industry-geography pairs that pre-identified using

the theory.

Our test is derived from a standard nested constant-elasticity-of-substitution

(CES) demand system with a finite number of competing firms and with a

higher elasticity of substitution within an industry than across industries. As

4See Bresnahan (1987) for evidence of Detroit’s Big 3 automakers in the 1950s, and Christie, Harris
and Schultz (1994) for Wall Street in the 1990s. The major Hollywood production studios were convicted
of anti-competitive agreements in the theaters that they owned in the Paramount anti-trust case of the
1940s. Ongoing litigation alleges non-compete agreements for workers among Silicon Valley firms.
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is well known in this setup and empirically confirmed (e.g., Atkeson and Burstein

(2008),Edmond, Midrigan and Xu (2015)), the gross markup that a firm charges

is increasing in its own market share. We show that a subset of firms acting as

a perfect cartel, and therefore maximizing joint profits, leads to convergence in

markups across cartel members, as each member’s markup is set based on the

total market share of the cartel firms rather than its own firm-specific market

share.

Our test follows directly from the firm’s first-order condition in the model.

We regress the reciprocal of the firm’s markup on the firm’s own market share

and the total market share of its potential set of fellow cartel members.5 If

firms are acting independently, only the coefficient on own market share should

be significant, while under perfect collusion, only the coefficient on the cartel’s

market share should be significant. The test is similar in spirit to the standard

risk-sharing regression of Townsend (1994), focusing on a cartel of local (colluding)

firms rather than a syndicate of local (risk-sharing) households.6 It has similar

strengths, in that it allows for the two extreme cases of independent decision-

making and perfect joint maximization. However, it also allows intermediate

cases. As in Townsend, we can be somewhat agnostic about the actual details

of how non-competitive behavior occurs. In principle, collusion could be either

explicit or tacit, for example, and firm behavior could be Cournot or Bertrand.

The test is also robust along other avenues. Importantly, our theoretical results,

and so the validity of the test, depend only on the constant elasticity demand

system. They are therefore robust to arbitrary assumptions on the (differentiable)

cost functions and geographical locations of the individual firms. Moreover, we

5Throughout the paper we consider several different possibilities for sets of firms that are colluding,
such as firms with a common owner, firms in the same geographic region, and firms in the same special
economic zone.

6An important difference between our context and that of Townsend (1994) is the potential confound-
ing effect of measurement error. Ravallion and Chaudhuri (1997) argue that idiosyncratic measurement
error potentially biases the measure of risk-sharing upward when measurement error in the dependent
variable is unrelated to that in the independent variable. In our context, measurement error in revenue
affects both our measure of market shares and of markups. As discussed in Section II.B, that implies that
idiosyncratic measurement error actually biases our measure of collusion downward. Hence, idiosyncratic
measurement error cannot explain our results.
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use simulations to show that our test performs well for plausible levels of firm

uncertainty, including correlated demand or cost shocks, and when we relax our

strong assumptions on the demand system. Indeed, simulations calibrated to our

empirical exercise show only small biases when departures from our assumptions

are in the empirically plausible range.

Empirically, we use the test to assess the possibility of collusion in Chinese

industrial clusters and SEZs. SEZs are generally considered to have played a key

role in its growth miracle, and we have a high quality panel of firms with a great

deal of spatial and industrial variation. The panel structure of the Annual Survey

of Chinese Industrial Enterprises (CIE) allows us to estimate markups using the

cost-minimization methods of De Loecker and Warzynski (2012) and implement

our test using within-firm variation.

Our test both identifies non-competitive pricing in simple validation exercises

and rejects it in simple placebo tests. Specifically, we test for joint profit max-

imization among groups of affiliates with the same parent company and in the

same industry. Similarly, we test for joint profit maximization among state-owned

firms in the same industry. Consistent with the theory, in our validation tests

we estimate a highly significant relationship between markups and cartel market

share, but an insignificant relationship with own market share. This is exactly

what the theory predicts for firms that maximize their joint profits. In our placebo

tests, we find no response in markups to industrial cluster market shares and no

influence of SEZs on markup behavior among these sets of firms.

In the broader sample of Chinese firms, competitive behavior appears much

more prevalent than collusive behavior, but behavior becomes somewhat more

collusive as we move to smaller geographic definitions of a cluster. Moreover, we

find stronger evidence in subsets of clusters: SEZs and clusters pre-screened as

having low initial cross-sectional variation in markups. SEZs have policies tar-

geting firms in specific industries and locations, and give them benefits such as
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special tax treatment or favorable regulation. 7 They also attempt to foster co-

operation through industry associations, trade fairs, and coordinated marketing,

but such venues can be used to reduce competition.8 We find that the intensity

of collusion is four times higher for clusters in SEZs than for those not in SEZs.

Our results therefore have normative importance for evaluating the desirability

of cluster policies in China and elsewhere. Moreover, we apply our pre-screening

criteria, focusing on clusters in the lowest three deciles of cross-sectional markup

variation, and find that only the cluster market share is a significant predic-

tor of the panel variation in markups. That is, this subsample appears to be

dominated by effectively collusive behavior. These clusters are characterized by

disproportionately higher concentration industries, have lower export intensities,

and contain a greater proportion of private domestic enterprises (as opposed to

foreign or state-owned ventures).

Our paper contributes and complements the literatures on both industrial clus-

ters and collusion. We are not the first paper to examine collusion in cooperative

industry associations, industrial clusters or agglomerations. The 19th century

railroad associations in the U.S., originally formed to cooperate on technical

(e.g., track width) and safety standards to link the various rails, soon turned

to an explicit cartel designed to manage competition (see, e.g., Chandler (1977)).

Colluding clusters in the 20th century have also been studied. Bresnahan (1987)

studied collusion of the Big 3 automakers in Detroit, and Christie, Harris and

Schultz (1994) examine NASDAQ collusion on Wall Street. More recently, Gan

and Hernandez (2013) shows that hotels near one another effectively collude.

Methodologically, the recent industrial organization literature on collusion has

tended toward detailed case studies of particular industries, making less stringent

7We use SEZ in the broad sense of the term. See Alder, Shao and Zilibotti (2013) for a summary of
SEZs, their history, and their policies.

8Our own interviews with firm owners and administrators of industrial clusters in China uncovered
explicit cooperation on pricing. For example, the leader of an industry association acknowledged, “We
do not allow internal competition on pricing. If a firm tried price cutting, we would kick them out.” One
role of this industry association was to accept and manage large orders that were “too large or difficult
for one firm to fill.” The industry association leader allocated orders among its member firms while also
maintaining quality.
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assumptions on demand or basing them on deep institutional knowledge of the

industry.9 We complement these papers by developing a test that can be applied

to a wide range of industries. We apply the test to the entire economy of a

developing country that has actively promoted industrial clusters. Thus, our test

can be used to guide broad industrial policy ex ante, rather than focusing on a

case study that could be useful for prosecuting a specific cartel ex post .

The local growth impact of Chinese SEZs has been studied in Alder, Shao and

Zilibotti (2013), Wang (2013), and Cheng (2014), and they have been found to

have sizable positive effects using panel level data at the local administrative units.

Our firm-level evidence of non-competitive behavior suggests that this growth

may have important, unintended consequences.10 Measured value added may be

higher among firms in SEZs in part because collusion allowed them to achieve

higher markups, which is an important caveat when interpreting the previous

results. Finally, we contribute to an emerging literature examining the role of

firm competition – markups in particular – on macro development, including

Asturias, Garcia-Santana and Ramos (2015), Edmond, Midrigan and Xu (2015),

Galle (2016), and Peters (2015).

The rest of this paper is organized as follows. Section I presents the model

and derives the key theoretical results. Section II lays out are empirical test and

reviews our empirical application. Section III discusses our data and methods for

identifying markups. Section IV discusses the empirical results, while Section V

concludes.

9Einav and Levin (2010) give an excellent review of the rationale for moving away from cross-industry
identification. Our test also relies on within-industry (indeed, within-firm) identification.

10While collusion is likely an unintended consequence of agglomeration it is not obvious that the
effect is negative. In a second best world, collusion itself may be welfare improving over high levels
of competition. See, for example, Galle (2016) or Itskhoki and Moll (2015) for the case where financial
frictions are present. In this paper we do not need to take any stand on whether the welfare consequences
of collusion are negative or positive.
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I. Model

We develop a simple static model of a finite number of differentiated firms that

yields relationships between firm markups and market shares under competition

and cartel behavior, and we show the robustness of these results to various as-

sumptions. We assume a nested CES demand system of industries and varieties

within the industry, which we assume is independent of location. Whereas the

structure of demand is critical, we make minimal assumptions on the production

side, allowing for a wide variety of determinants of firms costs, such as location

choice, arbitrary productivity spillovers, and productivity growth for firms.11

A. Firm Demand

A finite number of firms operate in an industry i. The demand function of firm

n in industry i is:

(1) yni = Di

(
pni
Pi

)−σ (Pi
P

)−γ
,

where pni is the firm’s price, and Pi and P are the price indexes for industry i

and the economy overall, respectively. Thus, σ > 1 is the own price elasticity of

any variety within industry i, while γ > 1 is the elasticity of industry demand to

changes in the relative price index of the industry.12 Typically, σ > γ, so that

products are more substitutable within industries than industries are with one

another. The parameters Di captures the overall demand at the industry level.

For exposition, we define units so that demand is symmetric across firms in the

same industry, but this is without loss of generality. As each firm in the industry

11Our assumption that demand is independent of location implicitly assumes negligible trade costs in
output, which is important in allowing for agglomeration based on externalities rather than local demand.
Empirically, we will focus on manufactured goods.

12We analyze highly disaggregated industries, so the assumption γ > 1 is natural.
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faces symmetric demand, the industry price index within industry i is:

(2) Pi =

∑
m∈Ωi

p1−σ
mi

1/(1−σ)

,

where Ωi is the set of all firms operating in industry i.

As we show in the online appendix, this demand system can be derived as the

solution to a household’s problem that has nested CES utility.

One can invert the demand function to get the following inverse demand:

(3) pni = P

(
yni
Yi

)−1/σ ( Yi
Di

)−1/γ

,

where:

(4) Yi =

∑
m∈Ωi

y
1−1/σ
mi

 σ
σ−1

.

To establish notation that will be used throughout this paper, we define market

shares as:

(5) sni =
pniyni∑

m∈Ωi

pmiymi
=

y
1−1/σ
ni∑

m∈Ωi

y
1−1/σ
mi

,

where the second equality follows from substituting in (1) for prices and simpli-

fying.

This demand system implies that the cross-price elasticity is given by a simple

expression:

(6) ∀m 6= n,
∂ log(yin)

∂ log(pim)
= (σ − γ) sim.

which allows for simple aggregation in the results that follow. Our structure
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of demand, which implies a this cross-price elasticity restriction and a constant

elasticity of demand, allows us to be very general in our specification of firm

costs. The cost to firm n of producing yni units of output is C(yni;Xni), where

Xni represents a general vector of characteristics such as capital, technology, firm

productivity, location, externalities operating through the production levels of

other firms, and any other characteristics that are taken as given by the producer

when making production choices. For example, a special case of our model would

be one in which an initial stage involves a firm placement game in which each

firms’ productivity is determined by the placement of each other firm through

external spillovers, local input prices, or other channels. Then the results from

that first stage determine Xni that firms take as given when production choices

are made, which is a special case of our framework.13

We now separately consider two extreme cases: firms operating totally inde-

pendently and firms acting as a perfect cartel. We then consider intermediate

cases.

B. Firms Operating Independently

First, we consider the case of all firms operate independently of one another.

The static profit maximization problem of a firm n in industry i is:

(7) πni = max
yni

pniyni − C(yni;Xni).

Using (3), the firm’s optimal pricing condition equates marginal revenue with

marginal cost:

(8) pni

(
σ − 1

σ
+

[
1

σ
− 1

γ

]
y

1−1/σ
ni∑

m∈Ωi
y

1−1/σ
mi

)
= C ′(yni;Xni).

13However, note that the fact that firms maximize static profits below implicitly limits the way the
vector Xni can relate to past production decisions, such as dynamic learning-by-doing, sticky market
shares, or dynamic contracts.
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Using the definition of market shares, sni, given above, rearranging (8), and

defining the firm’s gross markup, µn, as the ratio of price to marginal cost yields

the well-known result:14

(9)
1

µni
=
σ − 1

σ
+

(
1

σ
− 1

γ

)
sni.

When a firm is operating independently, and given values of the elasticity param-

eters, this equation implies that the only information that is needed to predict

a firm’s markup is that firm’s market share. In particular, while factor prices,

productivity, and local externalities captured by Xni would certainly affect quan-

tities, prices, costs, and profits, markups are only affected by Xni through their

impact on market shares. For σ > γ, the empirically relevant case, additional

sales that accompany lower markups come more from substitution within the in-

dustry than from growing the relative size of the industry itself. Firms with larger

market shares have more to lose by lowering their prices, so they charge higher

markups.

C. Cartel

We contrast the case of independent firms with the opposite extreme: a subset

of firms within an industry forms a cartel to maximize the sum of their profits.

Within an industry i, consider a set S ⊆ Ωi of firms that solve the following joint

maximization problem:

(10)
∑
m∈S

πmi = max
{ymi}m∈S

∑
m∈S

pmiymi − C(ymi;Xmi).

14See, for example, Edmond, Midrigan and Xu (2015) or Atkeson and Burstein (2008).
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Using our definition of market shares again, we can express the first order condi-

tion as:

(11) ∀n ∈ S, C ′(yni;Xni) = pni
σ − 1

σ
+ pni

∑
m∈S

(
1

σ
− 1

γ

)
smi.

Then rearranging (11) gives the relationship between markups and market shares:

(12)
1

µni
=
σ − 1

σ
+

(
1

σ
− 1

γ

)∑
m∈S

smi.

The markup of a firm within the set S depends only on the total market share

of all firms within the group. While the independent firm considered only its

own market share, the cartel internalizes the costs to its own members of any one

firm selling more goods, and these cost depends on the total market shares of the

member firms. In this extreme case of a perfect cartel, the firm’s own market

share influences its markup only to the extent that it affects the cartel’s share.

A number of corollary results follow from equations (9) and (12). First, clearly

σ > γ > 1 implies that an independent firm’s markup is increasing in its own

market share. Second, for a firm in a cartel, the firm’s markup is increasing in

the total market share of the cartel. That is, the firm’s own market share plays

no role except to the extent that it affects the cartel market share. Third, cartel

members all charge the same markup, since their markup is based on the sum

of their market shares. In our empirical work later we interpret this to mean

that there is less variation in markups when firms collude than they would have

if they operated independently. Fourth, if any member of a cartel were instead

operating independently, that firm’s markup would be lower and its market share

would be higher. Finally, the market shares of any set of colluding firms exhibit

more variation than if the same set of firms was operating independently.

We summarize the above characterization in the following proposition.

PROPOSITION 1: Given σ > γ > 1:

12



1) When operating independently, firm markups are increasing in the firm’s

own market share.

2) When maximizing joint profits, firm markups are increasing in total cartel

market share, with the firm’s own market share playing no additional role.

3) Cartel firm markups are more similar under perfect cartel than independent

decisions.

4) Firm markups are higher under perfect cartel decisions than independent

decisions.

5) Firm market shares are less similar under perfect cartel decisions than in-

dependent decisions.

Each of these claims will be addressed in our empirical work that follows. We will

use the first two claims to derive our test in Section II, while the third and fourth

claims will be used to pre-identify potential collusive clusters. Finally, we will use

the fifth claim as additional testable implication. We have intentionally written

Proposition 1 in general language. In the subsection below, we will show that,

while the precise formulas vary, these more general claims are robust to several

alternative specifications.

D. Alternative Models

We present related results below for the cases of firm-specific price elasticities,

Bertrand competition rather than Cournot, an imperfect cartel, and monopson-

istic collusion.

Firm-specific price elasticities

To allow for markups to vary among competitive firms with the same market

share, we allow for a firm-specific elasticity of demand. In particular, suppose

13



that inverse demand takes the form:

(13) pin = D
1/γ
i Py

−1/σ+δin
in Y

1/γ−1/σ
i .

Here δin captures the firm-specific component of demand, and we think of these

as deviations from the average elasticity σ:
∑

n∈Ωi
δin = 0. Proceeding as before

to derive markup equations, the first order conditions for an independent firm

imply:

(14)
1

µni
= δni +

σ − 1

σ
+

(
1

γ
− 1

σ

)
sni,

and for a cartel, the analogous equation is:

(15)
1

µni
= δni +

σ − 1

σ
+

(
1

γ
− 1

σ

)
.
∑
m∈S

smi

Firm markups are again increasing in either the firm or cartel’s market share

and the magnitude of this relationship is governed by the difference between the

within- and across-industry elasticities. In addition, however, the presence of δni

in both equations shows the level of markups may be firm-specific, even when

market share is arbitrarily small or firms are members of the same cartel. This

could explain why firms in the same cartel have differing markups.

Bertrand competition

Now we consider the case where firms take competitors’ prices as given instead

of quantities when making production choices. From the demand function (1),

we can write the problem of a firm operating independently as:

max
{pni,yni}

pniyni − C(yni;Xni)
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subject to: yni = Di

(
pni
Pi

)−σ (Pi
P

)−γ
.

Taking first-order conditions with respect to both choice variables and dividing

them yields the following equations, which are analogous to (9) and (12), respec-

tively:

(16)
µin

µin − 1
= σ − (σ − γ)sin

and

(17)
µin

µin − 1
= σ − (σ − γ)

∑
m∈S

sim.

Equation (16) corresponds to the case where firms operate independently, and

equation (17) to the case where firms are in a perfect cartel. Again, given elasticity

parameters we see that firms’ market shares (in the case of independent firms) or

cartels’ market shares (in the case of perfect cartels) are sufficient to solve for the

firms’ markups. As before, higher markups coincide with higher market shares,

and the magnitude of this increasing relationship depends on the gap between

the two elasticity parameters.

Imperfect Cartel

Purely independent pricing and pure cartel represent two extreme cases. Here

we consider an imperfect cartel, in which firms place a positive weight κ ∈ (0, 1)

on other firms’ profits relative to its own, so that each firm maximizes:

πin + κ
∑

m∈S/{n}

πim.
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It is easy to show that the markup now depends on both the firm and cartel

market shares. For the Cournot case, we have:

(18)
1

µni
=
σ − 1

σ
+ (1− κ)

(
1

σ
− 1

γ

)
sni + κ

(
1

σ
− 1

γ

)∑
m∈S

smi.

Monopsony behavior

Instead of colluding to increase output prices, firms may instead collude to

reduce input costs. As a simple case to evaluate this possibility, suppose each

firm n in location j uses a single factor to produce its output by a production

function ynj = F (lnj ;Xnj). To fix ideas, we refer to this as labor. The aggregate

supply of labor Lj depends on the market wage wj , which is common across firms

in a given location. For simplicity, we assume the function for the market wage

takes the following form:

(19) wj(Lj) = AjL
φ
j .

Firms take the labor demand decisions of other firms (or those outside their own

cartel) as given. To isolate the effect of monopsony power, suppose that firms

take the price of their output as given. Then the problem of an independent firm

n in location j is:

max
ynj ,lnj

pnjynj − wj(Lj)lnj

subject to: ynj ≤ F (lnj ;Xnj)

Lj =
∑
m

lmj .

Since there are a finite number of firms purchasing labor, firm optimality implies

a markup because firms restrict their purchases of labor to keep wages low. A

firm n in location j has labor market share:

(20) sLnj =
lnj
Lj
.
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Optimality for the independent firm implies that the markup is given by:

(21) µnj = 1 + φsLnj

and the analog for the cartel imply a result similar to (12):

(22) µnj = 1 + φ
∑
m∈S

sLmj

Three things are important to note. First, the expressions above define marginal

cost as the cost of producing an additional unit at market prices. Therefore the

markup is:

(23) µnj =
pnj

wj(Lj)/F ′(lnj ;Xnj)

Second, the shares in the expressions depend critically on the view of labor

markets and the definition of relevant labor supply, Lj . If labor is mobile across

industries but not across locations, it would be the total local labor force. If

labor is specialized by industry but mobile across locations, it would be the total

industry labor force. If immobile along both dimensions, it would be the total

local industry-specific labor, while if mobile in both dimensions, it would be the

economy-wide total labor force. Finally, note that it would be trivial to replace

labor with any other input in the analysis.

II. Empirical Approach

In this section, we present our empirical test for non-competitive pricing; assess

the robustness of the test on Monte Carlo simulations; and discuss our application

to China, including the data and methods of acquiring markups.
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A. Test for Non-Competitive Pricing

The model of the previous section yielded the result that the markups of com-

petitive firms depend on the within-industry elasticity of demand and their own

market share, while the markups of perfectly colluding firms depend on the to-

tal market share of the firms in the cartel. This motivates the following single

empirical regression equation for inverse markups:

(24)
1

µnit
= θt + αni + β1snit + β2

∑
m∈S

smit + εnit

for firm n, a member of (potential) cartel S, in industry i at time t.

In the case of purely independent pricing, the hypothesis is β2 = 0 and β1 < 0.

The case of a pure cartel, we have the inverted hypothesis of β2 < 0 and β1 = 0.

The relationships in equations (9) and (12) hold deterministically. The error term

εnit could stem from (classical) measurement error in the estimation of markups,

which we discuss in Section III.B, or from uncertainty or other model specification

error as discussed in Section II.B.

Moreover, for the case of intermediate collusion, κ in (18) can be easily esti-

mated from equation (24) as:

(25) κ̂ =
β̂2

β̂1 + β̂2

Furthermore, equation (18) implies that we can use the regression in equation

(24) to estimate the elasticity parameters. These equations imply that:

(26)
1

σ̂
− 1

γ̂
= β̂1 + β̂2

σ̂ − 1

σ̂
=

1

N

∑
i

∑
n∈Ωi

 1

µni
− β̂1sni − β̂2

∑
m∈Sni

smi


where N is the number of firms. It is then immediate to solve these equations
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simultaneously to generate estimates of the elasticity parameters.

An alternative interpretation of κ̂ as a measure of the intensity of collusion can

be derived from considering the case of a subset of S̃ ⊂ S firms who perfectly

collude, while the others compete independently. This also leads to intermediate

estimates in both coefficients, with β1 larger and β2 smaller for S̃ than for S.

Under somewhat stronger assumptions that the distribution of market shares is

the same for colluding and non-colluding firms, we can show that κ equals the

fraction of firms perfectly colluding.15

Equation (24) has strong parallels with the risk-sharing test developed by

Townsend (1994). In that family of risk-sharing regressions, household consump-

tion is regressed on household income and total (village) consumption in the

risk-sharing syndicate. Townsend solves the problem of a syndicate of house-

holds jointly maximizing utility and perfectly risk-sharing, and contrasts that

with households in financial autarky; We solve the problem of a syndicate of

firms jointly maximizing profits in perfect collusion and contrast with those in-

dependently maximizing profits. Townsend posited that households in proximity

are likely to be able to more easily cooperate, defining villages as the appropri-

ate risk-sharing network. We posit the same is true for firms and examine local

cooperation of firms. Our test also shares another key strength of risk-sharing

tests: we do not need to be explicit about the details of collusion because we only

look at its effects on pricing.16 Finally, as discussed in Section I.D, firms could

compete as in Cournot or Bertrand, and the essential elements of the test hold in

each.

We also note the presence of time and firm dummies in our test. The time

dummies, θt, capture time-specific variation, which is important since markups

have increased over time, as we show in the next section. In principle, firm-

specific fixed effects are not explicitly required in the case of symmetric demand

15Details of this claim are provided in the appendix.
16For example, we do not need to distinguish between implicit or explicit price collusion.
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elasticities.17 Nevertheless, we add αni to capture fixed firm-specific variation in

the markup, stemming perhaps from firm-specific variation in demand elasticities,

as discussed in Section I.D. Together, these time and firm controls assure that the

identification in the regression stems from within-cluster and within-firm variation

over time in markups and market shares.

B. Simulation Results

We derived our test from the model in Section I, which assumed that (i) all

relevant information is known to the firm before it makes its production or pricing

decisions, (ii) demand is nested-CES, and (iii) there is no measurement error. In

reality firms face unanticipated shocks to production costs and demand, and they

take this uncertainty into account when making decisions. Indeed we require

such unanticipated shocks in order to identify our production functions used in

our empirical implementation. Moreover, demand may not be CES, and there

may be measurement error with specific levels of correlation. Here we examine

the robustness of our tests to relaxing these assumptions by running our test on

simulated data from an augmented model.

We augment demand and technologies for firm n in industry i located in region

k in year t according to the following equations:

(27) ynikt = εniktDnikt

(
pnikt + p̄

Pi

)−σ (Pi
P

)−γ
,

ynikt = ρniktzniktl
η
nikt

The parameter η allows for curvature in the cost function, while the parameter

p̄ allows for decreasing (p̄ < 0) and increasing (p̄ > 0) demand elasticities. Here

Dnikt and znikt are the known component of (firm-specific) demand and produc-

17Here the parallel with Townsend breaks, since risk-sharing regression require household fixed effects,
or differencing, in order to account for household-specific Pareto weights. In contrast, cartels maximize
profits rather than Pareto-weighted utility, and as long as profits can be freely transferred – an assumption
needed for a perfect cartel – all profits are weighted equally.
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tivity, respectively, while εnikt and ρnikt are the unanticipated shocks to demand

and productivity, respectively. Note that demand and productivity shocks are

not equivalent in this model, since productivity shocks affect marginal cost, while

demand shocks do not.

We then augment the firm’s problem to allow for partial collusion captured by

κ and take into account firm uncertainty:

(28) max
lnikt

∫
ε

∫
ρ

(1− κ)πnikt(l, ε, ρ) + κ
∑

m∈Sikt

πmikt(l, ε, ρ)

 dF (ε)dG(ρ)

where the unsubscripted ε, ρ, l are vectors of demand shocks, cost shocks, and

labor input choices. We assume that each firm belows to a cluster Sikt that

jointly solve (28). In later sections we consider different cases for the sets of

firms that may be colluding, but in this section we refer to them generally as

clusters. Notice that F and G are probability distributions over vectors. We

will consider covariation of these shocks across firms at the firm, cluster, region-

industry, industry, and year levels.

We simulate this model for various parameter values, run our test regression

on the simulated data, and evaluate the bias in κ as measured by equation (25).

We overview the results here, and full details are given in the online appendix.

Our first exercise is to measure the bias to our estimates from unanticipated

shocks. When shocks are at the level of the individual firm or are correlated at

the level of the cluster, we find that they can bias our results, but these work

in opposite directions. Unanticipated shocks at the individual level push our

estimate of κ toward zero, while those at the cluster level push κ toward one. This

is because individual shocks cause comovement in markups and individual shares

independent of the cluster shares, which causes the coefficient on the individual

share to increase in magnitude. The opposite is true for the cluster shock, which

causes the coefficient on cluster share to increase in magnitude relative to that
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on the individual share. These effects can bias our β̂1 and β̂2 estimates. These

estimates can lead to bias in κ̂ for two reasons. First, biases in β̂1 and β̂2 feed

directly into κ̂. Second, since κ̂ is a nonlinear function of β̂1 and β̂2, then variance

in the estimates of those coefficients leads to bias in κ̂.

In all of these results, we stress that this bias only results from unanticipated

shocks, and any shocks to cost or demand that are anticipated will not bias

our results no matter how those shocks are correlated across firms as discussed

in Section I. In particular, if changes in the price of inputs are spatially or

industrially correlated it only biases our results to the extent to which they are

unanticipated.

In our second exercise, we study how large these unanticipated shocks would

have to be to generate economically significant bias in our results. We parame-

terize the simulation to match the regression output from our baseline exercise,

which is discussed in Section IV.B. We select the variance of individual shocks,

the variance of cluster shocks as well as values of σ, κ and γ in order to match

the point estimates and standard errors on the coefficients on own and cluster

shares, the average markup, the estimated value of κ and the adjusted R2 (when

averaged across all simulations) to their counterparts in the Chinese analysis. We

find that magnitudes of these shocks are not large enough to substantially bias

our estimates of κ. In our parameterized simulation, the true value of κ is 0.32

while the estimated value is 0.26. In general, the quantitative importance of these

depend on the magnitude of shocks relative to predictable variation in the data.

Hence, large bias in estimates of κ would require a substantially lower adjusted

R2 than we observe in the data.

In our third exercise, we simulate a non-CES demand system. Applying the

form of non-CES demand given in equation (27), we find that, as the CES-

deviating parameter, p̄, moves away from zero, our estimated coefficient on firms’

own shares can be biased. In the case of p̄ > 0 (implying a decreasing elasticity,

as in linear demand, for example), the estimate would be upward biased, since a
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firm’s markups would increase with its output (and firm’s market share) simply

from the decreasing elasticity. The converse is true for p̄ < 0. Nevertheless, the

coefficient estimate on the cluster shares are unbiased. This is important because,

if we wished to test for the presence of collusion, our model implies that we should

test if the coefficient on the cluster share is positive. Thus, the fact that our co-

efficient on cluster share is unbiased with non-CES demand implies that our test

for the presence of collusion is unaffected by non-CES demand. However, the fact

that the coefficient on firms’ own shares is biased implies that our estimate of the

magnitude of collusion, κ̂, is biased when demand is non-CES, and the direction

of bias depends on the direction of the deviation from CES demand.

Our final exercise is to consider measurement error in revenues and costs in

the model to see how that affects our estimate of κ.18 One might suspect that

idiosyncratic measurement error would lead to overestimation of collusion in a

way that it can lead to overestimates of risk-sharing.19 However, we find that

idiosyncratic measurement error actually leads to a downward bias in our estimate

of κ.

This bias may seem surprising, but it has a simple explanation. Measurement

error in regressors typically biases their coefficient estimates toward zero, so mea-

surement error in a firm’s own market shares alone should shrink that regressor’s

coefficient and push the estimate of κ toward one. However, this intuition relies

on market share measurement error being independent of markups, but mea-

surement error in revenue affects both measured market shares and measured

markups. If the measured value of revenue is higher than its true value, both

measured markups and measured market shares are by construction higher than

their true values, and therefore idiosyncratic measurement error causes them to

positively comove. We thereforeoverestimate the strength of the relationship be-

tween the two, increasing our estimate of β̂1 and causing a downward bias in κ̂.

18Measurement error is distinguished from the case of model misspecification described above in that
unanticipated shocks are taken into account when firms make choices, while measurement error has no
effect on firm choices.

19See, for example, Ravallion and Chaudhuri (1997)’s critique of Townsend (1994).
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Hence, if measurement error is idiosyncratic, we would tend to underestimate the

extent of collusion. 20

Our conclusion from these simulations is that the most serious threat to the

interpretation of our results as evidence of collusion is any shock correlated at

the level of the cluster. We address this concern in multiple ways, as discussed

in detail in the following sections. We examine variation across different sets of

firms, where we have stronger or weaker a priori reasons to suspect collusion.

First, we examine affiliated of the same parent company as a validation. Second,

using similar reasoning, we evaluate firms that are state-owned enterprises within

an industry, and we also run a placebo test for local collusion in the sample

of state-owned firms. Third, we utilize the result in Proposition 1 that collusion

makes markups more similar (Result 3) to motivate separately examining clusters

with low coefficients of variation in markups over the cross-section of firms in

the cluster. To limit potential endogeneity, we identify these clusters using the

cross-sectional variation of firms in the initial year of our data (1999). Within

the model, these clusters could have low markup variation because (i) they are

colluding or (ii) they have lower variation in market shares (because of similarity

in firm-specific demand or technology, for example). We assume the former in our

ex ante identification strategy, but then we evaluate the latter ex post. Finally,

as a robustness check, we add region-time specific fixed effects to control for any

region-time specific cost shocks, such as unanticipated shocks to factor prices.

III. Application to Chinese Data

For our empirical test, we examine manufacturing firms in China. Manufac-

turing firms have the advantage of being highly tradable, as is consistent with

the assumption in our model that demand does not depend on location or local

markets. Our measurement methods are standard and closely follow the existing

20By the same argument, however, measurement error that is perfectly correlated at the level of the
cluster biases the estimate of κ upward, and the overall bias for a mix of idiosyncratic and cluster-specific
measurement error depends on the relative strength of each.

24



literature.

A. Why China?

China has several advantages. First, it has the world’s largest population and

second largest economy. The size of the Chinese country and economy give us

wide industrial and geographic heterogeneity. Second, China is a well-known

development miracle, and its success is often attributed, at least in part, to its

policies fostering special economic zones and industrial clusters.21 Third, both

agglomeration and markups have increased over time as shown in Figure 1, which

plots the average level of industrial agglomeration (as defined below) and average

markups.

Finally, we have a high quality panel of firms for China: the Annual Survey

of Chinese Industrial Enterprises (CIE), which was conducted by the National

Bureau of Statistics of China (NBSC). The database covers all state-owned en-

terprises (SOEs), and non-state-owned enterprises with annual sales of at least

5 million RMB (about $750,000 in 2008).22 It contains the most comprehensive

information on firms in China. These data have been previously used in many in-

fluential development studies (e.g., Hsieh and Klenow (2009), Song, Storesletten

and Zilibotti (2011)).

B. Measurement

Between 1999 and 2009, the approximate number of firms covered in the NBSC

database varied from 162,000 to 411,000. The number of firms increased over

time, mainly because manufacturing firms in China have been growing rapidly,

and over the sample period, more firms reached the threshold for inclusion in

the survey. Since there is a great variation in the number of firms contained

21For example, a World Bank volume (Zeng, 2011) cites industrial clusters as an “undoubtedly im-
portant engine [in China’s] meteoric economic rise.”

22We drop firms with less than ten employees, and firms with incomplete data or unusual pat-
terns/discrepancies (e.g., negative input usage). The omission of smaller firms precludes us from speaking
to their behavior, but the impact on our proposed test would only operate through our estimates of market
share and should therefore be minimal.
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in the database, we used an unbalanced panel to conduct our empirical analysis.

This NBSC database contains 29 2-digit manufacturing industries and 425 4-digit

industries.23

The data also contain detailed data on revenue, fixed assets, labor, and, im-

portantly, firm location at the province, city, and county location. Of the three

designations, provinces are largest, and counties are smallest. We construct real

capital stocks by deflating fixed assets using investment deflators from China’s

National Bureau of Statistics and a 1998 base year. Finally, the “parent id code”,

which we use to identify affiliated firms, is only available for the year 2004, but we

assume that ownership is time invariant. We construct market shares using sales

data and following the definition in Equation (5). We also use firms’ registered

designation to distinguish state-owned enterprises (SOEs) from domestic private

enterprises (DPEs), multinational firms (MNFs), and joint ventures (JVs).

We do not have direct measures of prices and marginal cost, so we cannot di-

rectly measure markups. Instead, we must estimate firm markups using structural

assumptions and structural methods, the method of De Loecker and Warzynski

(2012), referred to as DW hereafter, in particular. DW extend Hall (1987) to show

that one can use the first-order condition for any input that is flexibly chosen to

derive the firm-specific markup as the ratio of the factor’s output elasticities to

its firm-specific factor payment shares:

(29) µi,t =
θvi,t
αxi,t

.

This structural approach has the advantage of yielding a plant-specific, rather

than a product-specific, markup. The result follows from cost-minimization and

holds for any flexibly chosen input where factor price equals the value of marginal

product. Importantly, we use materials as the relevant flexibly chosen factor. The

denominator αxi,t is therefore easily measured.

23We use the adjusted 4-digit industrial classification from Brandt, Van Biesebroeck and Zhang (2012).
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The more difficult aspect is calculating the firm-specific output elasticity with

respect to materials, θvi,t, which requires estimating firm-specific production func-

tions. The issue is that inputs are generally chosen endogenously to productivity

(or profitability). We address this by applying Ackerberg, Caves and Frazer

(2006)’s methodology, presuming a 3rd-order translog gross output production

function in capital, labor, and materials that is:

(30) qnit = βk,iknit + βl,ilnit + βm,imnit+

βk2,ik
2
nit + βl2,il

2
nit + βm2,im

2
nit + βkl,iknitlnit + βkm,iknitmnit+

βlm,ilnitmnit + βk3,ik
3
nit + ...+ ωnit + εnit.

Note that the coefficients vary across industry i, but only the level of productivity

is firm-specific. This firm-specific productivity has two stochastic components.

εnit is a shock that was unobserved/anticipated by the firm (and could reflect

measurement error, as mentioned above) and is therefore exogenous to the firm’s

input choices. However, ωnit is a component of TFP that is observed/anticipated,

and so it is potentially correlated with ki,t , lnit, and mnit because the inputs

are chosen endogenously based on knowledge of the former. They assume that

ωnit is Markovian and linear in ωni(t−1). Identification comes from orthogonality

moment conditions that stem from the timing of decisions, namely lagged labor

and materials and current capital (and their lags) are all decided before observing

the innovation to the TFP shock, and a two-step procedure is used to first estimate

εnit and then the production function.

Production functions are estimated at the industry-level (although the estima-

tion allows for firm-specific factor-neutral levels of productivity). The precision of

the production function estimates – and hence the measurement error in markups

– therefore depends on the number of firms in an industry. For this reason, we

follow DW and weight the data in our regressions using the total number of firms

in the industry.
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Finally, we use information on the geographic industries and clusters that we

study. Namely, we merge our geographic and industry data together with de-

tailed data from the China SEZs Approval Catalog (2006) on whether or not a

firm’s address falls within the geographic boundaries of targeted SEZ policies,

and, if so, when the SEZ started. We use the broad understanding of SEZs, in-

cluding both the traditional SEZs but also the more local zones such as High-tech

Industry Development Zones (HIDZ), Economic and Technological Development

Zones (ETDZ), Bonded Zones (BZ), Export Processing Zones (EPZ), and Bor-

der Economic Cooperation Zones (BECZ). Since no SEZs were added after 2006,

these data are complete. Since our data start in 1999, the broad, well-known

SEZs that were established earlier offer us no time variation. We also measure

agglomeration at the industry level using using the Ellison and Glaeser (1997)

measure, where 0 indicates no geographic agglomeration (beyond that expected

by industrial concentration), 1 is complete agglomeration, and negative would

indicate “excess diffusion” relative to a random balls-and-bins approach.24

Table 1 presents the relevant summary statistics for our sample of firms.

IV. Results

We start by presenting the results validating our test using affiliated firms. We

then present the results for the overall sample (which are mixed), the results for

those pre-identified clusters with low variation in markups across firms (which

strongly indicate collusion), and some important characteristics of these collusive

24Specifically, start by defining a measure of geographic concentration, G:

G ≡
∑
i

(si − xi)2

, where si is the share of industry employment in area i and xi is the share of total manufacturing
employment in area i. This therefore captures disproportionate concentration in industry i relative to

total manufacturing. Using the Herfindahl index H =
∑N
j=1 z

2
j , where zj is plant j’s share in total

industry employment, we have the following formula for the agglomeration index g:

g ≡
G−

(
1−

∑
i x

2
i

)
H(

1−
∑
i x

2
i

)
(1−H)

.
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clusters. Throughout our regression analysis, we report robust standard errors,

clustered at the firm level.

A. Validation and Placebo Exercises

We start by running our test on the sample of affiliated firms. That is, we define

our potential cartels in equation (24) as groups of affiliated firms in the same

industry who all have the same parent, and we construct the relevant market

shares of these cartels. We know from existing empirical work (e.g., Edmond,

Midrigan and Xu (2015)) that markups tend to be positively correlated with

market share. Our hypothesis is β1 = 0 and β2 < 0, however, so that own

market share will not impact markups after controlling for total market share.

We estimate (24) for various definition of industries: 2-digit, 3-digit, and 4-digit

industries. Note that the definition of industry affects not only the market share

of the firm and cartel, but the set of affiliates in the cartel. The broader industry

classification incorporates potential vertical collusion, but it also makes market

shares themselves likely less informative.

Table 2 present the estimates, β̂1 and β̂2. (We omit the firm and time fixed

effects from the tables.) The first column shows the estimates, where we assume

perfectly independent behavior and constrain the coefficient on collusion share to

be zero. In the next three columns, we assume perfect collusion at the cluster

level (constraining the coefficient on firm share to be zero), and define clusters

at the 2-digit, 3-digit, and 4-digit levels, respectively. The last three columns are

analogous in their cluster definitions, but we do not constrain either coefficient.

We report robust standard errors, clustered at the firm level. The sample of

observations is a very small subset (less than two percent) of our full sample

both because we only include affiliates, and because we only have parent/affiliate

information for firms present in the 2004 subsample.

Focusing on the last three columns, we see that our hypothesis is confirmed

for the finer industry classifications, especially the 4-digit industry classification.
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In particular, the coefficient on own share is small and statistically insignificant,

while the the cartel share is negative and marginally significant at a ten percent

level. Returning the results that constrain β̂1 to zero (i.e., column (iv)), and ap-

plying (26), yields estimates of σ = 4.5 and γ = 2.9. (The corresponding values

implied by column 7 are very similar at 4.5 and 3.1. The implied demand elas-

ticities in all of our results are consistent with those found using other methods,

e.g., elasticities based on international trade patterns in Simonovska and Waugh

(2014), which is encouraging given the potential biases discussed in Section ??.)

For the 3-digit industry classification, the impact of cartel market share is larger

and even more significant, but the coefficient on own share actually exceeds the

coefficient on cartel share (though statistically insignificant). The broad 2-digit

industry classification gives insignificant results, however, likely reflecting the fact

that our test is based on horizontal competition where industrial markets are nar-

rowly defined.

Our second validation exercise is analogous. Instead of examining private af-

filiates owned by the same parent, however, we examine state-owned enterprises

(SOEs), which are all owned by the government. The variation in the data natu-

rally reflect the privatization process occurring in China over the period (declining

market share of SOEs), and the corresponding decrease in markups, but we hy-

pothesize that competition amongst SOEs is weaker than competition between

SOEs and private firms.

Indeed, the results in Table 3 verify this hypothesis. Columns 2-4 examine

collusion at different industry aggregations, and, once again, our test is consistent

with perfect collusion at the disaggregate industry level. In column 4, we find the

coefficient on own share to be insignificant at the 4-digit level, while the coefficient

on cluster’s share is negative and significant. While our test uncovers negative

and statistically significant coefficients on cluster’s share at the broader industry

levels too, own share is also significant and the implied κ values are tiny. Again,

our model is one of horizontal competition, so it is natural that the results are
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most consistent when using the most disaggregate industries. For this reason, we

focus on the 4-digit industry classification, our narrowest, for the remainder of

our analyses.

Columns 5-7 consider variants where SOEs only collude with other SOEs (in

their 4-digit industry) that are in geographic proximity, i.e., at more local levels

of province, city, or county, respectively. We view this in some sense as a placebo

test, and indeed the evidence for collusion disappears at these more local levels.

We take this as evidence that the presence of any correlated local shocks are not

enough to erroneously lead to an assumption of only local collusion in the case of

SOEs.

We also run placebo tests that replicate our tests for industrial cluster-based

collusion, but use these subsets of firms. We use the identical measure of industrial

cluster market share that we use below, but consider only the markup response for

these sets of firms. The results are quite strong: we find no significant responses

of markups to the total market share of industrial clusters in either the SOE or

affiliated firm samples, and no effect of being in an SEZ. See the online appendix

for full results. These negative results are an important counter-example to the

idea that something about the construction of our test (e.g., biases due to spurious

local correlations) or our data automatically lead to false positives in detecting

collusion at cluster levels.

In sum, both validation tests are consistent with firms colluding within owner-

ship structures at the disaggregate industry level, and our test is able to reject

cluster-based collusion in placebo tests.

B. Non-Competitive Behavior in Industrial Clusters

We now turn to industrial clusters more generally by defining our potential

cartels as sets of firms in the same industry and geographic location. Table 4

presents the results. The first column shows the estimates, where we assume

perfectly independent behavior and constrain the coefficient on collusion share to
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be zero. In the next three columns, we assume perfect collusion at the cluster

level (constraining the coefficient on firm share to be zero), and define clusters at

the province, city, and county level respectively. The next three columns allow

for both shares to influence inverse markups, while the final three interact firm

market share and cluster market share with an indicator variable for whether the

firm is in a SEZ. Again, we report robust standard errors clustered at the firm

level.

Focusing on columns 1 through 7, we note several strong results. First, all of

the estimates are highly significant indicating that both firm share and market

share are strongly related to markups. Because all estimates are statistically dif-

ferent from zero, we can rule out either perfectly independent behavior or perfect

collusion at the cluster level. Second, all the coefficients on market shares are

negative, as we would predict if output within an industry are more substitutable

than output between industries. Third, the magnitudes are substantially larger

for own firm share. Fourth, as we define clusters at a more local level, the coef-

ficient on cluster share increases in magnitude, while the the coefficient on own

share decreases. This suggests that collusion is indeed more prevalent among

firms that are in proximity to one another.

The β2 < 0 estimates indicate some level of cluster-level collusion in the overall

sample.25 Again, applying equation (26), we can interpret the magnitude of the

implied elasticities and the extent of collusion. At the county level, we estimate

κ̂ = 0.26, while we estimate just κ̂ = 0.07 at the province level. This indicates a

relatively low level of non-competitive behavior overall, especially when examining

firms only located within the same province. The implied elasticity estimates are

σ = 4.8 and γ = 3.1. These implied elasticities are quite similar to those implied

in the smaller sample of affiliated firms, even though the level of collusion is

greater.

25We verify that this is not driven by the affiliated firms in two ways: (i) dropping the affiliated firms
from the sample, and (ii) assigning the parent group share within the cluster to firm share. Neither
changes affect our results substantially.
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Finally, we examine the role of SEZs examined in columns 8-10 of Table 4.

The coefficients on the interaction of the SEZ dummy with firm market share are

positive and significant but smaller in absolute value than the coefficient on firm

market share itself. Adding the two coefficients, own market share is therefore a

less important a predictor of (inverse markups) in SEZs. Similarly, the coefficients

on cluster market share are negative, so that overall cluster market share is a more

important predictor in SEZs. Indeed, using the county-level estimates in the last

column, we estimate a collusion index κ̂ = 0.45 for firms within SEZs, four times

higher than that of firms not in SEZs, where κ̂ = 0.11. Again, the results for

SEZs are strongest, the more local the definition of clusters. Recall, that SEZs are

essentially pro-business zones, combining tax breaks, infrastructure investment,

and government cooperation in order to attract investment. A common goal with

industry-specific zones or clusters is to foster technical coordination in order to

internalize productive externalities. The evidence suggests that such zones may

also facilitate marketing coordination and internalizing pecuniary externalities.

We have estimated similar regressions where we differentiate across industries

using the Rauch (1999) classification. Rauch classifies industries depending on

whether they sell homogeneous goods (e.g., goods sold on exchanges), referenced

priced goods, and differentiated goods. Without agriculture and raw materials,

our sample of homogeneous goods is limited, but we can distinguish between

industries that produce differentiated goods, and those that produce homoge-

nous/reference priced goods. Our estimates of κ are 0.14 for the former and

0.30 for the latter, indicating somewhat stronger collusion for more homogeneous

goods, consistent with existing arguments and evidence that collusion is less bene-

ficial and common in industries with differentiated products Dick (1996). Equally

interesting, the coefficients themselves are much larger for these goods, consistent

with a larger ρ, which would be expected, since goods should be highly substi-

tutable within these industries.26 Again, we view this latter consistency as further

26See the online appendix for details.
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evidence that our results are driven by the pricing-market share mechanism we

highlight rather than some other statistical phenomenon.

We have also examined robustness of the (county-level, unrestricted) results

in Table 4 to various alternative specifications. Although the theory motivates

weighting our regressions, neither the significance nor magnitudes of our re-

sults are dependent on the weighting in our regressions. We can also use the

Bertrand specification rather than Cournot, by replacing the dependent variable

with µnit/(µnit − 1). This Bertrand formulation require us to Windsorize the

data, however, because for very low markups the dependent variable explodes.

These observations take on huge weight, and very low markups are inconsistent

with the model for reasonable values of γ. If we drop all observations below

1.06, a lower bound on markups for a conservative estimate of γ = 10 (much

larger than implied by the Cournot estimates, for example), we get very similar

results, with implied elasticities σ = 5.5 and γ = 3.1 and the fraction colluding

κ = 0.40. Finally, we can use log markup, rather than inverse markup, as our

dependent variable. The log function may make these regressions more robust

to very large outlier markups. Naturally, the predicted signs are reversed, but

they are both statistically significant, indicating partial collusion, and the implied

semi-elasticities with respect to own and cluster share are 9.7 and 3.6 percent,

respectively. The details of these robustness studies are in our online appendix.

We next turn to clusters which appear a priori likely to be potentially collusive

because they have low cross-sectional variation in markups. We do this by sorting

clusters into deciles according to their coefficient of variation of the markup. Table

5 presents the coefficient of variation of these deciles, along with other cluster

decile characteristics, when clusters are defined at the county level. Note that the

average markup increases with coefficient of variation of markups over the top

seven deciles, but that this pattern inverts for the lowest three deciles, where the

average markup is actually higher as the coefficient of variation decreases. Higher

markups and lower coefficients of variation may be more likely to be collusive,
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given claims 3 and 4 in Proposition 1. We therefore focus on firms in the these

bottom three clusters, and the lowest thirty percent is not inconsistent with the

estimate that 26 percent of firms collude.27

The other key characteristics of these lowest deciles of clusters are also of inter-

est. First, although they have lower variation in markups, this does not appear

to be connected to lower variation in market shares, as the coefficients of varia-

tions in market shares are similar, showing no clear patterns across the deciles.

They have fewer firms per cluster, and are in industries with higher geographic

concentration (measured by the Ellison-Glaeser agglomeration index) and higher

industry concentration (as measured by the Hirschman-Herfindahl index). The

firms themselves are somewhat smaller in terms of fewer employees per firm.

Fewer firms in these clusters export, and overall exports are a lower fraction of

sales. Finally, although there are not sharp differences in the ownership distribu-

tion, they are disproportionately domestic private enterprises and somewhat less

likely to be multi-national enterprises or joint ventures. 28

Table 6 presents the results for this restricted sample of the lower three deciles.

The columns follow a parallel structure as in Table 4, but there are three columns

even for the regressions that only include firm market share because the set of

firms here varies depending on whether we define our clusters at the province,

city, or county level. In the results that assume perfectly independent behavior

we again find negative and significant estimates at the province and county level.29

In the results, that assume perfectly collusive behavior, we again find negative

significant estimates on cluster market share, and the results are again stronger,

the more locally the cluster is defined. The most interesting results in the table,

however, are those where we do constrain either coefficient. In this restricted

sample, we again find evidence of partially collusive behavior at the province

27These low markup variation deciles contain fewer firms on average, however, and so they constitute
only 16 percent of firms.

28Moreover, the single most disproportionately overrepresented industry in these clusters is petroleum
refining, a classic cartel in U.S. history.

29The city estimates have fewer observations, since there are fewer firms in the low markup variation
deciles of city clusters.
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level.

What is striking, however, is that the collusive behavior appears complete at

local levels within these restricted samples: only the β̂2 estimates are negative and

significant. The positive β̂1 at the city and county level are admittedly at odds

with the theory, but the coefficient are not statistically significant. Moreover,

the magnitude of the β̂1 (0.037) is less than half that of β̂2 (0.077) at the county

level. The county-level estimate in column (vi) implies a within-industry elasticity

σ that compares well with that in the full sample (5.0 vs. 4.8), but the between-

industry elasticity is somewhat higher than in the full sample (3.9 vs. 3.1).

Once again, we find significant impacts of SEZs when interacted with market

share. For counties, the region’s share is nearly twice as large for firms in SEZs.

C. Robustness

We now examine the robustness of our results to various alternatives. In par-

ticular, we attempt to address the issue that the correlation between markups

and cluster share may simply be driven by spatially correlated shocks to costs or

demand across firms, as our Monte Carlo simulations indicated could be prob-

lematic. We address this concern in two ways.

First, we add region-time specific fixed effects as controls into our regressions.

Our Monte Carlo simulations showed that these effectively control for any general

shocks or trends to production or costs at the region level, e.g., rising costs of land

or (non-industry-specific) labor from agglomeration economies. Controlling for

these, our regressions will only be identified by cross-industry variation in market

shares within a geographic location. Table 7 shows these results for the sample of

clusters with low initial variation in markups. The patterns are quite similar to

those in Table 6, although the magnitudes of the coefficients on cluster share are

somewhat smaller (e.g., -0.054 vs. -0.077) in column 9. The results are significant

at a five percent level. We find very similar results for the overall sample, but

since our SEZs show very little variation with counties, we cannot separately run
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our SEZ test using these fixed effects. Nonetheless, we view the robustness of

our results as evidence that spatially correlated shocks (or trends) do not drive

our inference, although in principle, industry-specific spatially correlated shocks

could still play a role.

Second, we attempt an instrumental variable approach, since shares themselves

are endogenous. Identifying general instruments may be difficult, but in the

context of the model and our Ackerberg, Caves and Frazer (2006) estimation,

exogenous productivity shocks affect costs and therefore exogenously drive both

market share and markups. We motivate our instrument using an approximation,

the case of known productivity zin and monopolistic competition. This set up

yields the following relationship between shares and the distribution of produc-

tivity:

(31) sin =
pinyin∑

m∈Ωi

pimyim
≈

z
1−1/σ
in∑

m∈Ωi

z
1−1/σ
im

We construct instruments for own market share (I1) and cluster market share

(I2) using variants of the above formula that exclude the firm’s own productivity

and the productivities of all firms in the firm’s cluster (Sn), respectively:

(32) I1 =
1∑

m∈Ωi/n

z
1−1/σ
im

, I2 =
1∑

m∈Ωi/Sn

z
1−1/σ
im

This two-stage estimation yields very similar results (see Table A.3). For ex-

ample, the coefficient on cluster share in the analog to column (ix) is -0.050 and

is significant at the five percent level. Again, the patterns we develop are broadly

robust.

In sum, we have shown that: the test detects collusion among firms owned by

the same parents in the affiliated and SOE samples; the markups of local SOEs

in a placebo test do not respond to their cluster market share; the estimates are
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consistent with the model’s mechanism based on the Rauch classification; our

collusion patterns are stronger in SEZs; the collusion patterns are very strong in

clusters that the model pre-identifies as likely colluders; these collusion patterns

are robust to inclusion of time-region specific fixed effects and instrumenting for

market share.

V. Conclusion

We have developed a simple, intuitive and robust test for identifying non-

competitive behavior for subsets of firms competing in the same industry. Using

this test we have found evidence of collusion in Chinese industrial clusters. These

results are strongest within narrowly-defined clusters in terms of narrow indus-

tries and narrow geographic units. A small but non-negligible share of firms

and clusters appear to exhibit from non-competitive behavior. This behavior is

disproportionately strong – four times greater – in special economic zones.

The results open several avenues for future research. In this paper we have

focused exclusively on China. However, the fact that it satisfied our validation

exercises means it could easily applied more generally to other countries and con-

texts where firm panel data are available. Furthermore, the potential normative

importance of our results are compelling with respect to evaluating industrial

policies that promote clustering, such as local tax breaks, subsidized credit, or

targeted infrastructure investments. They motivate more rigorous evaluation of

various normative considerations, including weighing the extent to which car-

tels hurt (or perhaps even help) consumers, productivity gains from external

economies of scale vs. monopoly pricing losses from cartels, and local vs. global

welfare implications and incentives. Precisely these issues are the subjects of our

continuing research.
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Figure 1: Increasing Agglomeration and Markups over Time in China
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Table 1: Key Summary Statistics of Data

Variable Mean Median S.D. Min Max

Markup 1.29 1.26 0.21 0.61 4.76

Firm Share 0.00 0.00 0.01 0 1
Cluster Share (Province) 0.14 0.10 0.14 0 1

Cluster Share (City) 0.04 0.02 0.06 0 1
Cluster Share (County) 0.02 0.00 0.04 0 1

Capital per Firm 320 50 3720 0.01 1,035,380
Materials per Firm 720 170 5940 0.05 860,550

Real Output per Firm 1000 240 7970 0.08 1,434,840
Workers per Firm 290 120 1010 10 166,860

No. of Firms 408,848

Notes: Market shares are computed using 4-digit industries. Capital,
output and materials are in thousand RMB (in real value).

Table 2: Baseline Results Using Affiliated Firms

Dependent Variable: 1
µnit

(1) (2) (3) (4) (5) (6) (7)
4-digit 2-digit 3-digit 4-digit 2-digit 3-digit 4-digit

Firm’s share -0.036 -0.223 0.283 0.073
(0.057) (0.666) (0.268) (0.086)

Cluster’s share -0.206 -0.196∗∗ -0.077 -0.190 -0.258∗∗∗ -0.119∗

(0.171) (0.090) (0.049) (0.182) (0.100) (0.072)

Year FEs YES YES YES YES YES YES YES

Firm FEs YES YES YES YES YES YES YES

Observations 26779 26779 26779 26779 26779 26779 26779

Adjusted R2 .518 .518 .519 .518 .518 .519 .518

Notes: Robust standard errors clustered at firm level in parentheses. Significance: ∗∗∗: 1%, ∗∗:
5%, ∗: 10%. Various industry aggregation levels are employed, including 4-digit industry (in
specifications 1, 4 and 7), 3-digit industry (in specifications 3 and 6), and 2-digit industry (in
specifications 2 and 5). All specifications are regressions weighted by the number of observations
for each two-digit CIC sector production function estimation reported (following De Loecker et al.
2014). All regressions include a constant term.



Table 3: Baseline Results Using SOEs as Cluster

Dependent Variable: 1
µnit

(1) (2) (3) (4) (5) (6) (7)
all SOEs in the industry province city county

4-digit 2-digit 3-digit 4-digit 4-digit 4-digit 4-digit

Firm’s Share -0.047 -1.801∗∗ -0.331∗ -0.028 0.012 0.004 -0.018
(0.056) (0.810) (0.201) (0.056) (0.064) (0.072) (0.120)

Cluster’s Share -0.047∗∗ -0.020∗∗ -0.026∗∗∗ -0.062∗∗ -0.053 -0.030
(0.019) (0.010) (0.007) (0.031) (0.049) (0.112)

Year FEs YES YES YES YES YES YES YES

Firm FEs YES YES YES YES YES YES YES

Observations 111520 111520 111520 111520 111520 111520 111520

Adjusted R2 .572 .572 .572 .572 .572 .572 .572

Notes: Robust standard errors clustered at firm level in parentheses. Significance: ∗∗∗: 1%, ∗∗:
5%, ∗: 10%. Various industry aggregation levels are employed, including 4-digit industry (in
specifications 1 and 4-7), 3-digit industry in specifications, and 2-digit industry in specifications 2.
All specifications are regressions weighted by the number of observations for each two-digit CIC
sector production function estimation reported (following De Loecker et al. 2014). All regressions
include a constant term.
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Table A.3: Appendix Table–Rauch Product Classification Results

Dependent Variable: 1
µnit

(1) (2) (3) (4) (5) (6)
homo/ref diff. overall homo/ref diff. overall

Firm’s Share -0.170∗∗ -0.050∗∗ -0.150∗∗∗ -0.075 -0.031 -0.185∗∗∗

(0.084) (0.024) (0.058) (0.224) (0.026) (0.044)

Region’s Share -0.071∗∗∗ -0.013 -0.064∗∗∗ -0.293∗∗∗ -0.006 -0.066∗∗∗

(0.013) (0.009) (0.012) (0.100) (0.010) (0.010)

Differentiated X firm share 0.087 0.147∗∗∗

(0.062) (0.049)

Differentiated X region share 0.054∗∗∗ 0.065∗∗∗

(0.014) (0.014)

Differentiated Dummy -0.003∗∗ -0.001
(0.001) (0.001)

Year FEs YES YES YES YES YES YES

Firm FEs YES YES YES YES YES YES

Observations 283277 1037618 1398020 78326 715552 1398020
Adjusted R2 .568 .532 .537 .434 .538 .537

Notes: Robust standard errors clustered at firm level in parentheses. Significance: ∗∗∗: 1%, ∗∗: 5%, ∗: 10%.
Specifications 1-3 refer to product classification using “most frequent” principle; specifications 4-6 refer to
product classification using “pure” principle. All specifications are regressions weighted by the number of
observations for each two-digit CIC sector production function estimation reported (following De Loecker et al.
2014). All regressions include a constant term.
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Table A.5: Appendix Table–Robustness

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Dependent Variable = 1/µnit

Firm’s Share -0.112∗∗∗ -0.081∗∗∗ -0.142∗∗∗ -0.049∗∗∗ -0.031∗∗∗ -0.073∗∗∗

(0.011) (0.012) (0.015) (0.009) (0.010) (0.013)

Region’s Share -0.041∗∗∗ -0.029∗∗∗ -0.017∗∗∗ -0.023∗∗∗ -0.017∗∗∗ -0.002
(0.004) (0.004) (0.005) (0.004) (0.005) (0.005)

SEZ*Firm’s Share 0.090∗∗∗ 0.076∗∗∗

(0.023) (0.021)

SEZ*Region’s Share -0.026∗∗∗ -0.032∗∗∗

(0.007) (0.007)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 0.541 0.541 0.541 0.538 0.539 0.539 0.539 0.536

Panel B: Dependent Variable = µnit/(µnit − 1) (full sample)

Firm’s Share 169.961 143.820 295.045 352.320 329.188 605.930
(256.601) (280.289) (364.181) (346.765) (390.900) (530.172)

Region’s Share 45.849 24.251 16.686 89.076 22.092 11.689
(95.777) (104.618) (123.835) (152.865) (172.321) (217.461)

SEZ*Firm’s Share -300.513 -547.209
(562.327) (842.053)

SEZ*Region’s Share 24.188 29.639
(164.433) (305.981)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 -0.021 -0.021 -0.021 -0.068 -0.068 -0.068 -0.068 -0.098

Panel C: Dependent Variable = µnit/(µnit − 1) (drop µnit < 1.06)

Firm’s Share -2.482∗∗∗ -1.429∗∗∗ -3.048∗∗∗ -1.724∗∗∗ -0.958∗∗∗ -2.077∗∗∗

(0.322) (0.352) (0.462) (0.284) (0.318) (0.406)

Region’s Share -1.185∗∗∗ -0.971∗∗∗ -0.842∗∗∗ -0.913∗∗∗ -0.726∗∗∗ -0.473∗∗∗

(0.120) (0.131) (0.156) (0.122) (0.137) (0.163)

SEZ*Firm’s Share 2.937∗∗∗ 2.693∗∗∗

(0.716) (0.649)

SEZ*Region’s Share -0.445∗∗ -0.677∗∗∗

(0.204) (0.226)

Observations 1335576 1335576 1335576 1093555 1335576 1335576 1335576 1093555
Adjusted R2 0.438 0.438 0.438 0.439 0.432 0.432 0.433 0.434

Panel D: Dependent Variable = log(mu)nit

Firm’s Share 0.136∗∗∗ 0.097∗∗∗ 0.171∗∗∗ 0.057∗∗∗ 0.035∗∗ 0.087∗∗∗

(0.014) (0.016) (0.020) (0.012) (0.014) (0.017)

Region’s Share 0.051∗∗∗ 0.036∗∗∗ 0.016∗∗ 0.028∗∗∗ 0.021∗∗∗ -0.001
(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

SEZ*Firm’s Share -0.097∗∗∗ -0.089∗∗∗

(0.031) (0.027)

SEZ*Region’s Share 0.042∗∗∗ 0.047∗∗∗

(0.009) (0.010)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 0.53 0.53 0.53 0.529 0.529 0.529 0.529 0.528

All Panels
Year FEs YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES

Notes: Robust standard errors in parentheses. Significance: ∗∗∗: 1%, ∗∗: 5%, ∗: 10%. Regions are defined at county level.
Specifications 1-4 are weighted regressions; specifications 5-8 are unweighted regressions. All regressions include a constant term.



Online Appendix

A1. Derivation of the Demand Function

Suppose the household solves the following problem:

(A1) max
{Yi}

(∑
i

D
1/γ
i Y

γ−1
γ

i

) γ
γ−1

subject to: ∑
i

PiYi ≤ P

We take the budget of the household P to be exogenous. Cost minimization on
the part of the representative household implies the demand function:

(A2) Yi = Di

(
Pi
P

)−γ
The final product in each industry is assembled by competitive firms in each
industry that solves:

(A3) PiYi = min
{yni}

∑
n∈Ωi

pniyni

subject to:

Yi =

(∑
i

y
σ−1
σ

ni

) σ
σ−1

Cost minimization on the part of these competitive firms implies:

(A4) yni = Yi

(
pni
Pi

)−σ
Combining equations (A2) and (A4) implies:

(A5) yni = Di

(
Pi
P

)−γ (pni
Pi

)−σ
A2. Proof of Proposition 1

Suppose marginal costs of all firms are bounded and non-decreasing. Proposi-
tion 1 has the following five parts:

1) If operating independently, firm markups are increasing in a firm’s own
market share,

1



2) If operating as a cartel, cartel markups are increasing in total cartel market
share with each firm’s own market share playing no additional role,

3) Firm markups are higher under cartel decisions than when operating inde-
pendently,

4) Firm markups are more similar when operating as a cartel than when op-
erating independently,

5) Firm market shares are more similar when operating independently than
when operating as a cartel

PROOF:
Suppose any firm n in industry i weights the profits of the set of firms S ⊂ Ωi

with constant κ ∈ [0, 1]. Then their objective is:

(A6) max
yni

p(yni)yni − C(yni;Xni) + κ
∑
m∈S

[p(ymi)ymi − C(ymi;Xmi)]

Then for µni defined as price divided by marginal cost and share defined as the
firm’s revenue divided by the sum of firm revenues in the industry, the firm’s first
order condition can be rewritten as:

(A7)
1

µni
= 1 + (1− κ)

∂ log(pni)

∂ log(yni)
+ κ

∑
m∈S

smi
sni

∂ log(pmi)

∂ log(yni)

If inverse demand is given by:

(A8) pni = Diy
−1/σ
ni

∑
m∈Ωi

y
1−1/σ
mi

σ
γ
γ−1
σ−1
−1

Then the cross-price elasticities are:

(A9)
∂ log(pmi)

∂ log(yni)
=

(
1

σ
− 1

γ

)
sni

The own-price elasticity is:

(A10)
∂ log(pni)

∂ log(yni)
= − 1

σ
+

(
1

σ
− 1

γ

)
sni

Together these imply that:

(A11)
1

µni
= 1− 1

σ
+

(
1

σ
− 1

γ

)(
(1− κ)sni + κ

∑
m∈S

smi

)
2



Firms operating independently is the case where κ = 0, so then:

(A12)
1

µni
= 1− 1

σ
+

(
1

σ
− 1

γ

)
sni

This implies result 1, when σ > γ. Likewise, if firms are operating as a perfect
cartel, then κ = 1:

(A13)
1

µni
= 1− 1

σ
+

(
1

σ
− 1

γ

)∑
m∈S

smi

This immediately implies the second result. Moreover, equations (A12) and (A13)
together imply the fourth result, as cartels have no variation in markups (even if
they have variation in market shares) while independent firms have markups that
vary with their shares.

To compare firms in a cartel to those operating independently, we construct an
artificial single firm that is equivalent to the cartel. That is, suppose κ = 1 so
that the cartel solves:

(A14) max
{ymi}

∑
m∈S

(pmiymi − C(ymi;Xmi))

where pmi is given by (A8). Now define a cartel aggregate of production:

(A15) Y =

(∑
m∈S

y
1−1/σ
mi

) σ
σ−1

Let C̃(Y ) be the cost function of the cartel defined as:

(A16) C̃(Y ) = min
{ymi}

∑
m∈S

C(ymi;Xmi)

subject to: Y =

(∑
m∈S

y
1−1/σ
mi

) σ
σ−1

Then the following problem is equivalent to (A14):

(A17) max
Y

DiY
1−1/σ

(
Y 1−1/σ +

∑
n/∈S

y
1−1/σ
ni

)σ
γ
γ−1
σ−1
−1

− C̃(Y )

3



First notice that the Envelope Theorem applied to the problem in (A16):

(A18) ∀m ∈ S, C̃ ′(Y ) = λ =
C ′(ymi;Xmi)

y
−1/σ
mi Y 1/σ

Then we can relate the size of the cartel to the cost of the cartel’s production.

LEMMA 1: Consider a cartel made up of in T ⊂ S. Then for every level of
production Y , the marginal cost in the cartel composed of T is strictly higher than
in the cartel composed of S.

To prove this lemma, suppose yTmi is how much firm m produces when part of the
cartel composed of T and ySmi is how much the same firm produces when part of
the cartel composed of S. Then for any given Y it must be the case that:

ySmi < yTmi =⇒ C ′(ySmi;Xmi)

ySmi
−1/σ

Y 1/σ
<
C ′(yTmi;Xmi)

yTmi
−1/σ

Y 1/σ
=⇒ C̃S

′
(Y ) < C̃T

′
(Y )

where the second implication follows from the fact that all firms have non-
decreasing marginal costs. The first inequality follows from bounded marginal
costs and Inada conditions in the aggregation of individual firm production to
cartel-level production. Therefore, if more firms are added to a cartel, marginal
costs for the cartel are reduced for every level of output.

Given this lemma, notice that as a cartel grows, the markup that the cartel
charges strictly increases. This follows immediately from that fact that, given the
lemma, marginal costs decline so cartel production increases, and as another firm
from within the same industry is brought into the cartel, that firm’s production is
no longer counted in the denominator when computing the cartel’s market share.
Therefore, the cartel’s market share strictly increases as more firms are added.
Hence, by (A13), the markup charged by the cartel increases.

A special case of this result is part 3 of Proposition 1. If a firm is operating
outside of an existing cartel then is brought into it, the new cartel would have
strictly higher markups than either the original cartel or the formerly independent
firm.

To demonstrate the last result, consider any two firms n and m within the same
cartel. Manipulating (A18) gives:

(A19)
C ′(ymi;Xmi)

C ′(yni;Xni)
=

(
ymi
yni

)− 1
σ

=

(
smi
sni

) 1
1−σ

Then consider two other firms v and w that are operating independently. Then
the relationship between marginal cost and market share is:

(A20)
C ′(yvi;Xvi)

C ′(ywi;Xwi)
=

(
svi
swi

) 1
1−σ 1− 1/σ + (1/σ − 1/γ)svi

1− 1/σ + (1/σ − 1/γ)swi
4



Suppose these two pairs of firms have the same relative marginal costs. Then:

(A21)
C ′(ymi;Xmi)

C ′(yni;Xni)
=

C ′(yvi;Xvi)

C ′(ywi;Xwi)
=⇒

(
smi
sni

) 1
1−σ

=

(
svi
swi

) 1
1−σ 1− 1/σ + (1/σ − 1/γ)svi

1− 1/σ + (1/σ − 1/γ)swi

Without loss, if firms v and m have relatively high costs, then:

(A22)
C ′(ymi;Xmi)

C ′(yni;Xni)
=

C ′(yvi;Xvi)

C ′(ywi;Xwi)
> 1 =⇒

1− 1/σ + (1/σ − 1/γ)svi
1− 1/σ + (1/σ − 1/γ)swi

> 1 =⇒ sni
smi

>
swi
svi

Therefore, independently operating firms have wider variation in market shares
conditional on marginal cost than do firms operating as a cartel. This completes
the proof.

A3. Simulation of Model with Shocks to Demand and Costs

We now consider a version of the model where some uncertainty in costs or
demand is realized after production choices are made. Firm i in industry j located
in region k in year t solves the following problem:

max
lijkt

∫
Sε

∫
Sρ

(1− κ)πijkt(l, ε, ρ) + κ
∑

m∈ωjkt

πmjkt(l, ε, ρ)

 dF (ε)dG(ρ)

where:

πijkt(l, ε, ρ) = Dj(εijktl
1/η
ijkt)

1−1/σ

 ∑
m∈Ωjt

(εmjktl
1/η
mjkt)

1−1/σ

σ
γ
γ−1
σ−1
−1

− ρijkt
lijkt
zijkt

Here ε is the vector of demand shocks, ρ is the vector of cost shocks, and l is the
vector of production choices. The set of firms operating in industry j at time t is
Ωjt, and its subset of firms operating within region k is ωjkt. For any given firm,
zijkt is the component of their costs that is known before production decisions
are made. Without heterogeneity in this, there would be no heterogeneity in lijkt.
The parameter η allows for curvature in the cost function.

Notice that F and G are probability distributions over vectors, and we will
consider covariance at the cluster, industry and year levels.
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The first order condition implies:∫
Sρ

ηρijktl
1−1/η

ijkt

zijkt
dG(ρ) =

=

∫
Sε

pijkt(l, ε)

σ − 1

σ
+

(
1

σ
− 1

γ

) κ(εijktl
1/η
ijkt)

1−1/σ + (1− κ)
∑

n∈ωjkt

(εnjktl
1/η
njkt)

1−1/σ

∑
m∈Ωjt

(εmjktl
1/η
mjkt)

1−1/σ

 dF (ε)

where:

pijkt(l, ε) = Djε
1−1/σ
ijkt l

−1/ησ
ijkt

 ∑
m∈Ωjt

(εmjktlmjkt)
1/η(1−1/σ)

σ
γ
γ−1
σ−1
−1

Firms face a variety of shocks at different levels:

εijkt = ν1ε
1
t + ν2ε

2
jt + ν3ε

3
ijkt + ν4ε

4
jkt + ν5ε

5
kt

ρijkt = µ1ρ
1
t + µ2ρ

2
jt + µ3ρ

3
ijkt + µ4ρ

4
jkt + µ5ρ

5
kt

Therefore, we can separately analyze shocks at different levels.

Computational Implementation

The simulated dataset has T years, J industries and K regions. Every industry-
region-year has I firms within it. The vectors ε and ρ are therefore of length
I × J × K × T . First, both ε and ρ are simulated M times. Then a vector L
is drawn. Then L is input as the vector of production choices of firms. Using
the first order condition, we then solve for the vector Z of anticipated costs that
rationalizes the vector L. Together, Z, L, and the realization of shocks implies
markups (using the method of De Loecker and Warzynski) and market shares for
each firm. Then, for each realization, the regression described in the paper is run
on the simulated data. This is done M times.

For these results we choose σ = 5, γ = 3, and κ = 0.3. We set T = 11, J = 5,
K = 8, I = 10 and M = 1000. We assume that the log of each shock is a standard
normal random variable.

Effects of Shocks: Comparative Statics

First we look at the effects of all twelve types of shocks individually. The table
below presents the results of setting µ1 = ... = µ5 = ν1 = ... = ν5 = 0, then
individually setting each to 1.
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In each iteration of the simulation we run the following regression:

1

markupijkt
= α+ β1sijkt + β2cjkt + δijkt

where:

sijkt =
(εijktyijkt)

1−1/σ∑
m∈Ωjt

(εmjktymjkt)
1−1/σ

cjkt =
∑
l∈ωjkt

sljkt

Here we present the simulated moments of κ̂ defined by:

Table A1—Simulation Results: Ex Post Shocks

No Fixed Effects Region-Year and Firm FEs
Cost Shocks: Avg. κ̂ St. Dev. κ̂ Adj. R2 Avg. κ̂ St. Dev. κ̂ Adj. R2

Year 0.3000 0.0075 -0.0006 0.2995 0.0171 0.9999
Industry-Year 0.3000 0.0015 0.0030 0.3000 0.0024 0.1719
Firm-Year 0.0120 0.0562 0.0093 0.0044 0.0577 0.0130
Cluster-Year 0.9759 0.0059 0.0805 0.9982 0.0059 0.2628
Region-Year 0.2227 0.0332 0.0175 0.3178 0.0253 0.6229
Demand Shocks: Avg. κ̂ St. Dev. κ̂ Adj. R2 Avg. κ̂ St. Dev. κ̂ Adj. R2

Year 0.3000 0.0065 -0.0006 0.3000 0.0145 0.9999
Industry-Year 0.2999 0.0086 -0.0006 0.2998 0.0149 0.1650
Firm-Year 0.0652 6.7790 -0.0001 0.0199 5.3935 -0.0003
Cluster-Year 1.1084 24.2151 0.0016 0.8891 5.2687 0.1846
Region-Year 0.0179 23.5850 0.0021 0.3018 0.0215 1.0000

Firm FEs Region-Year FEs
Cost Shocks: Avg. κ̂ St. Dev. κ̂ Adj. R2 Avg. κ̂ St. Dev. κ̂ Adj. R2

Year 0.3003 0.0124 -0.1004 0.3004 0.0098 1.000
Industry-Year 0.3000 0.0020 -0.0147 0.3000 0.0016 0.1694
Firm-Year 0.0035 0.0499 0.0125 0.0074 0.0605 0.0094
Cluster-Year 0.9986 0.0053 0.0984 0.9752 0.0066 0.2483
Region-Year 0.2253 0.0306 -0.0113 0.3101 0.0222 0.5584
Demand Shocks: Avg. κ̂ St. Dev. κ̂ Adj. R2 Avg. κ̂ St. Dev. κ̂ Adj. R2

Year 0.2995 0.0124 -0.1004 0.2999 0.0085 1.0000
Industry-Year 0.2998 0.0126 -0.0187 0.2998 0.0111 0.1711
Firm-Year -0.2294 15.1836 0.0002 -0.1389 6.0075 -0.0002
Cluster-Year 0.7296 8.6585 -0.0002 1.1787 2.6894 0.1893
Region-Year -1.3071 53.0598 0.0092 0.3004 0.0110 0.9999
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κ̂ ≡ β2

β1 + β2

The results from these experiments are given in Table A.A3. We provide four
sets of results based on the set of fixed effects considered, and for each case we
provide the average and standard deviation of κ across the 1000 simulations. We
also provide the adjusted R2 averaged across the 1000 simulations.

These results demonstrate two important things to help understand how our
estimates of κ could be biased. Firm-year shocks bias estimates of κ downward,
and cluster-year and region-year shocks bias estimates upward. The region-year
shocks can be mitigated with region-year fixed effects: the bias is almost elimi-
nated for cost shocks and is less severe for demand shocks. In the other cases,
the adjusted R2 of the model can fall considerably, but we see little evidence of
bias in estimates of κ.

Calibrated Example

The previous subsection demonstrates that the most serious bias arises when
ex post shocks are at the firm-year and cluster-year level. We now repeat the
numerical exercise from the previous section but now we parameterize the model
to replicate the results of our baseline results in column 7 of Table 4. As in that
regression, we include firm and year fixed effects and cluster standard errors at
the firm level. We first consider ex post shocks to demand at the firm-year level,
the cluster-year level, and the year level. We also have idiosyncratic firm-year ex
ante shocks. Each shock is assumed to be log-normal.

We calibrate seven parameters: the variance of all three ex post demand shocks,
the variance of the ex ante demand shock, γ, σ, and κ. We match seven moments:
the coefficient estimate on the firm’s own share and on the cluster’s share, the
point estimate of κ from equation (17), the standard errors on the firm’s own
share and on the cluster share, the average markup, and the regression’s adjusted
R2.

The calibrated value of κ is 0.3246, while the value in the model, as in the data,
is 0.2636. This demonstrates that, in this case, we underestimate the degree
of collusion with our procedure relative to its true value. This is because the
calibrated standard deviation of the firm-year shock is 0.0168 while that of the
cluster-year shock is 0.0015. As demonstrated in the previous subsection, the
firm-year shocks tend to bias estimated values of κ downward, while cluster-year
shocks bias them upward. Since the firm-year shocks are larger, our estimates in
the calibrated model are biased downward. Our estimate of σ is 4.5660 and γ is
3.2746. The standard deviation of the year-level shock is 0.0244 and the standard
deviation of the idiosyncratic ex ante shock is 0.4313.
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Figure A1. Varying Non-Homotheticity: Estimated κ

Departure from CES Demand

Next we consider the case where the demand system is instead given by:

(A23) qijkt =

(
pijkt + p̄

Pjt

)−σ (Pjt
Pt

)−γ
Proceeding with the same simulation technique as above, we consider the case
where there are no ex post shocks and vary the magnitude of p̄.

The results are summarized below in Figures A1 and A2. As the value of p̄
varies, as shown on the horizontal axis in both figures, on average our measure
of κ will be affected monotonically as shown in Figure A1. As before, the true
value of κ in this simulation is equal to 0.3. Figure A2 shows that this bias is
entirely due to bias in the coefficient on firms’ own shares. In fact, the coefficient
on cluster shares is unbiased by p̄.

This supports our conclusion that a non-CES demand system of this type affects
our estimate of the magnitude of collusion. However, if we interpret the t-test
of whether or not the coefficient on the cluster share is positive to be a test of
collusion, that test is unaffected by non-CES demand systems of this form.

Measurement Error

Finally, we consider the case where revenues are measured with error. We
proceed as before, but now instead of unanticipated shocks, we study the effect

9



Figure A2. Varying Non-Homotheticity: Coefficient Estimates

of increases in the variances of the measurement error.
Following the parameterization in the first simulation exercise, A.A3 shows the

effects of measurement error. In the “Idiosyncratic” columns, we assume that
measurement error has no correlation across firms. In the “Cluster” columns, we
consider the extreme case of correlation within clusters where measurement errors
are equal in all firms of the same cluster.

Table A2—Effects of Measurement Error

Measurement Error, Idiosyncratic

Var. of Error Avg. κ̂ St. Dev. κ̂ Avg. β̂1 Avg.β̂2

0.1 0.2763 0.0520 -0.0899 -0.0337
0.2 0.2135 0.0781 -0.1280 -0.0333
0.3 0.1563 0.0812 -0.1926 -0.0335
0.4 0.1170 0.0746 -0.2736 -0.0341
0.5 0.0840 0.0672 -0.3846 -0.0328

Measurement Error, Cluster

Var. of Error Avg. κ̂ St. Dev. κ̂ Avg. β̂1 Avg.β̂2

0.1 0.3602 0.0855 -0.0777 -0.0457
0.2 0.4954 0.1102 -0.0775 -0.0826
0.3 0.6322 0.1116 -0.0771 -0.1469
0.4 0.7253 0.0869 -0.0769 -0.2236
0.5 0.8033 0.0599 -0.0761 -0.3391

10
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Table A.3: Appendix Table–Rauch Product Classification Results

Dependent Variable: 1
µnit

(1) (2) (3) (4) (5) (6)
homo/ref diff. overall homo/ref diff. overall

Firm’s Share -0.170∗∗ -0.050∗∗ -0.150∗∗∗ -0.075 -0.031 -0.185∗∗∗

(0.084) (0.024) (0.058) (0.224) (0.026) (0.044)

Region’s Share -0.071∗∗∗ -0.013 -0.064∗∗∗ -0.293∗∗∗ -0.006 -0.066∗∗∗

(0.013) (0.009) (0.012) (0.100) (0.010) (0.010)

Differentiated X firm share 0.087 0.147∗∗∗

(0.062) (0.049)

Differentiated X region share 0.054∗∗∗ 0.065∗∗∗

(0.014) (0.014)

Differentiated Dummy -0.003∗∗ -0.001
(0.001) (0.001)

Year FEs YES YES YES YES YES YES

Firm FEs YES YES YES YES YES YES

Observations 283277 1037618 1398020 78326 715552 1398020
Adjusted R2 .568 .532 .537 .434 .538 .537

Notes: Robust standard errors clustered at firm level in parentheses. Significance: ∗∗∗: 1%, ∗∗: 5%, ∗: 10%.
Specifications 1-3 refer to product classification using “most frequent” principle; specifications 4-6 refer to
product classification using “pure” principle. All specifications are regressions weighted by the number of
observations for each two-digit CIC sector production function estimation reported (following De Loecker et al.
2014). All regressions include a constant term.
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Table A.5: Appendix Table–Robustness

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Dependent Variable = 1/µnit

Firm’s Share -0.112∗∗∗ -0.081∗∗∗ -0.142∗∗∗ -0.049∗∗∗ -0.031∗∗∗ -0.073∗∗∗

(0.011) (0.012) (0.015) (0.009) (0.010) (0.013)

Region’s Share -0.041∗∗∗ -0.029∗∗∗ -0.017∗∗∗ -0.023∗∗∗ -0.017∗∗∗ -0.002
(0.004) (0.004) (0.005) (0.004) (0.005) (0.005)

SEZ*Firm’s Share 0.090∗∗∗ 0.076∗∗∗

(0.023) (0.021)

SEZ*Region’s Share -0.026∗∗∗ -0.032∗∗∗

(0.007) (0.007)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 0.541 0.541 0.541 0.538 0.539 0.539 0.539 0.536

Panel B: Dependent Variable = µnit/(µnit − 1) (full sample)

Firm’s Share 169.961 143.820 295.045 352.320 329.188 605.930
(256.601) (280.289) (364.181) (346.765) (390.900) (530.172)

Region’s Share 45.849 24.251 16.686 89.076 22.092 11.689
(95.777) (104.618) (123.835) (152.865) (172.321) (217.461)

SEZ*Firm’s Share -300.513 -547.209
(562.327) (842.053)

SEZ*Region’s Share 24.188 29.639
(164.433) (305.981)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 -0.021 -0.021 -0.021 -0.068 -0.068 -0.068 -0.068 -0.098

Panel C: Dependent Variable = µnit/(µnit − 1) (drop µnit < 1.06)

Firm’s Share -2.482∗∗∗ -1.429∗∗∗ -3.048∗∗∗ -1.724∗∗∗ -0.958∗∗∗ -2.077∗∗∗

(0.322) (0.352) (0.462) (0.284) (0.318) (0.406)

Region’s Share -1.185∗∗∗ -0.971∗∗∗ -0.842∗∗∗ -0.913∗∗∗ -0.726∗∗∗ -0.473∗∗∗

(0.120) (0.131) (0.156) (0.122) (0.137) (0.163)

SEZ*Firm’s Share 2.937∗∗∗ 2.693∗∗∗

(0.716) (0.649)

SEZ*Region’s Share -0.445∗∗ -0.677∗∗∗

(0.204) (0.226)

Observations 1335576 1335576 1335576 1093555 1335576 1335576 1335576 1093555
Adjusted R2 0.438 0.438 0.438 0.439 0.432 0.432 0.433 0.434

Panel D: Dependent Variable = log(mu)nit

Firm’s Share 0.136∗∗∗ 0.097∗∗∗ 0.171∗∗∗ 0.057∗∗∗ 0.035∗∗ 0.087∗∗∗

(0.014) (0.016) (0.020) (0.012) (0.014) (0.017)

Region’s Share 0.051∗∗∗ 0.036∗∗∗ 0.016∗∗ 0.028∗∗∗ 0.021∗∗∗ -0.001
(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

SEZ*Firm’s Share -0.097∗∗∗ -0.089∗∗∗

(0.031) (0.027)

SEZ*Region’s Share 0.042∗∗∗ 0.047∗∗∗

(0.009) (0.010)

Observations 1470892 1470892 1470892 1205337 1470892 1470892 1470892 1205337
Adjusted R2 0.53 0.53 0.53 0.529 0.529 0.529 0.529 0.528

All Panels
Year FEs YES YES YES YES YES YES YES YES
Firm FEs YES YES YES YES YES YES YES YES

Notes: Robust standard errors in parentheses. Significance: ∗∗∗: 1%, ∗∗: 5%, ∗: 10%. Regions are defined at county level.
Specifications 1-4 are weighted regressions; specifications 5-8 are unweighted regressions. All regressions include a constant term.




