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A Derivation of Demand Function

The utility of a consumer in country j takes the following form:

Uj =

{∑
i

∫
ω∈Ωij

[(
qij(ω)xcij (ω) + x̄

)σ−1
σ − x̄

σ−1
σ

]
dω

} σ
σ−1

(A.1)

subject to the following budget constraint:

∑
i

∫
ω∈Ωij

pij(ω)xcij(ω)dω ≤ yj (A.2)

So that the Lagrange function can be written as: L =
{∑

i

∫
ω∈Ωij

[(
qij(ω)xcij (ω) + x̄

)σ−1
σ − x̄σ−1

σ

]
dω
} σ
σ−1

+

λ
(
yj −

∑
i

∫
ω∈Ωij

pij(ω)xcij(ω)dω
)
,where λ is the Lagrange multiplier, yj denotes the con-

sumer’s income. Taking the first order condition with respect to xcij(ω) yields:

λp̃ij (ω) = U
1
σ
j

(
qij(ω)xcij(ω) + x

)− 1
σ , (A.3)

where p̃ij (ω) = pij (ω) /qij (ω) is the quality adjusted price. Following Jung, Simonovska and

Weinberger (2019), we define Pjσ =
{∑

i

∫
ω∈Ωij

p̃ij (ω)1−σ dω
} 1

1−σ
, and Pj =

∑
i

∫
ω∈Ωij

p̃ij (ω) dω.

The budget constraint can be rewritten as:

yj + x̄Pj =
∑
i

∫
ω∈Ωij

p̃ij (ω)
(
qij(ω)xcij (ω) + x̄

)
dω

=
Uj
λσ

∑
i

∫
ω∈Ωij

(p̃ij (ω))1−σ dω =
Uj
λσ
P 1−σ
jσ (A.4)

where the second equility stems from equation (A.3). The previous equation (A.4) could be

rewritten as
Uj
λσ

=
yj+x̄Pj

P 1−σ
jσ

, which, together with equation (A.3), implies:

xij(ω) = xcij(ω)Lj =
Lj

qij (ω)

[
Uj

λσ (p̃ij (ω))σ
− x̄
]

=
Lj

qij (ω)

[
yj + x̄Pj

P 1−σ
jσ

(
pij (ω)

qij (ω)

)−σ
− x̄

]
(A.5)
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B Log Utility Function

The utility of a consumer in country j takes the log utility function form:

Uj =
∑
i

∫
ω∈Ωij

[
log
(
qij(ω)xcij (ω) + x̄

)
− log x̄

]
dω (B.1)

Based on the same derivation as in Appendix (A), the representative consumer in country j’s

demand satisfies:

xij(ω) = xcij(ω)Lj =
xLj
qij(ω)

[
ψj

p̃ij(ω)
− 1

]
(B.2)

where p̃ijs (ω) =
pij(ω)

qij(ω)
and ψj =

yj+x̄Pj
xNj

. The aggregate prices satisfies Pj =
∑

i

∫
ω∈Ωij

p̃ij (ω) dω.

Now, sales and profit for a given variety exported from i to j are as follows,

rij(ω) = x̄Lj p̃ij (ω)

[
ψj

p̃ij (ω)
− 1

]
(B.3)

πij(ω) = x̄Lj [p̃ij (ω)− c̃ij (ω)]

[
ψj

p̃ij (ω)
− 1

]
(B.4)

where c̃ij (ω) =
cij(ω)

qij(ω)
is the quality-adjusted marginal cost. Given the quality adjusted marginal

cost, firms maximize their profits. This implies that the optimal quality adjusted price of the

good satisfies:

p̃ij (ω) =
√
ψj c̃ij (ω)

We assume that the marginal cost of producing a variety of final good with quality qij by

a firm with productivity ϕ is given by:

cij(ϕ, ε) =

(
Tijwi +

wiτij
ϕ

qηij

)
ε

where τij is ad valorem trade cost and Tij is a specific transportation cost from country i to

country j. Maximizing the profit is equivalent to minimizing the quality-adjusted cost c̃ij (ω)

by the envelop theorem. Choosing the quality to minimize the quality-adjusted marginal cost

implies that the optimal level of quality for a firm with productivity ϕ is:

qij(ϕ, ε) =

(
Tijϕ

(η − 1) τij

) 1
η

(B.5)

and hence the quality adjusted marginal cost of production now is:

c̃ij (ϕ, ε) =

(
η

η − 1
Tijwi

) η−1
η
(

ϕ

ηwiτij

)− 1
η

ε (B.6)

At the productivity cutoff ϕ∗ij (ε), we have p̃∗ij (ϕ, ε) = c̃∗ij (ϕ, ε) = ψj, which implies that the
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productivity cutoff ϕ∗ij (ε) takes the following form:

ϕ∗ij (ε) = ϕ∗ijε
η =

ηη

(η − 1)η−1T
η−1
ij τijw

η
i (ψj)

−η εη,

In the log utility function, price could be written as:

pij(ϕ, ε) = p̃ij(ϕ, ε)qij(ϕ, ε) =

[
ϕ

ϕ∗ij (ε)

] 1
2η η

η − 1
Tijwiε.

Different from the CES utility function, now the markup function could be expressed explicitly

as
[

ϕ
ϕ∗ij(ε)

] 1
2η

.

C Derivation for Pj, Pjσ, Xij and πi

To derive the aggregate variables, we define tij = p̃ij (ω) /p∗j . Following the insight of Arkolakis

et al. (2019) and Jung, Simonovska and Weinberger (2019), this will make the integration not

country specific. From equations (9) and (11), we have:

c̃ij (ϕ, ε)

p̃∗j
=
c̃ij (ϕ, ε)

c̃∗ij (ϕ, ε)
=

(
ϕ

ϕ∗ij (ε)

)− 1
η

(C.1)

Combining the above equation with equation (6) we have:

σ

(
ϕ

ϕ∗ij (ε)

)− 1
η

= tσ+1
ij + (σ − 1) tij (C.2)

which implies that tij is a monotonically decreasing function of ϕ. Note that tij will lies between

(0, 1] since ϕ ∈
[
ϕ∗ij (ε) ,∞

)
. Totally differentiating both sides gives us:

dϕ = −ησηϕ∗ij (ε)
(σ + 1) tσij + (σ − 1)[
tσ+1
ij + (σ − 1) tij

]1+η dtij (C.3)

First, we derive Pjσ. By definition, we have:

Pjσ =

{∑
i

Nij

∫ ∞
0

∫ ∞
ϕ∗ij(ε)

p̃ij (ϕ, ε)1−σ µij (ϕ, ε) f (ε) dϕdε

} 1
1−σ

= p̃∗j

{∑
i

Nij

∫ ∞
0

[∫ ∞
ϕ∗ij(ε)

t1−σij µij (ϕ, ε) dϕ

]
f (ε) dε

} 1
1−σ

(C.4)

Plugging in the expression of conditional density µij (ϕ, ε) into equation (C.4) and then we

transform the integration variable from ϕ to tij by using the relationship between ϕ and tij,
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the inner integration with respect to productivity can be written as:∫ ∞
ϕ∗ij(ε)

t1−σij µij (ϕ, ε) dϕ =
ηθ

σηθ

∫ 1

0

t1−σij

[
tσ+1
ij + (σ − 1) tij

]ηθ−1 [
(σ + 1) tσij + (σ − 1)

]
dtij

which is a constant, and we denote it as βσ. Thus,

Pjσ = β
1

1−σ
σ p̃∗jN

1
1−σ
j

Second, we derive Pj. By definition, we have

Pj =
∑
i

Nij

∫ ∞
0

∫ ∞
ϕ∗ij(ε)

p̃ij (ϕ, ε)µij (ϕ, ε) f (ε) dϕdε

= p̃∗j
∑
i

Nij

∫ ∞
0

[∫ ∞
ϕ∗ij(ε)

tijµij (ϕ, ε) dϕ

]
f (ε) dε

= βp̃∗jNj

In the last equality, we use the same variable transformation method as before where β is a

constant, defined by:

β =
ηθ

σηθ

∫ 1

0

tij
[
tσ+1
ij + (σ − 1) tij

]ηθ−1 [
(σ + 1) tσij + (σ − 1)

]
dtij

To derive the equations (C.5) and (C.6), we plug in p̃∗j =

(
wj+x̄Pj

x̄P 1−σ
jσ

) 1
σ

into Pjσ and Pj, we

have:

Pjσ = β
1

1−σ
σ

(
wj + x̄Pj

x̄P 1−σ
jσ

) 1
σ

N
1

1−σ
j

Pj = β

(
wj + x̄Pj

x̄P 1−σ
jσ

) 1
σ

Nj,

which provide us with 2 equations to solve for Pjσ and Pj. Solving the system yields:

x̄Pj =
β

βσ − β
wj (C.5)

x̄Pjσ =
β

1
1−σ
σ

βσ − β
N

σ
1−σ
j wj (C.6)
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Next, we derive bilateral trade flow Xij, which is given by:

Xij = Nij

∫ ∞
0

[∫ ∞
ϕ∗ij(ε)

rij (ϕ, ε)µij (ϕ, ε) dϕ

]
f (ε) dε

= Nij

(
x̄p̃∗jLj

) ∫ ∞
0

[∫ ∞
ϕ∗ij(ε)

tij
(
t−σij − 1

)
µij (ϕ, ε) dϕ

]
f (ε) dε

= (βσ − β) x̄p̃∗jLjNij = Xj
Nij

Nj

where Xj =
∑

iXij is total absorption.

Finally, we derive firm’s expected average profit πi, which satisfies:

πi =
1

Ji

∑
j

Nij

∫ ∞
0

∫ ∞
ϕ∗ij(ε)

πij (ϕ, ε)µij (ϕ) f (ε) dϕdε

=
1

Ji
βπ
∑
j

x̄p̃∗jLjNij =
1

Ji

βπ
βσ − β

∑
j

Xij

=
1

Ji

βπ
βσ − β

∑
j

Nij

Nj

Xj

where

βπ =
ηθ

σηθ

∫ 1

0

(
tσ+1
ij − tij

) (
t−σij − 1

)
σ

[
tσ+1
ij + (σ − 1) tij

]ηθ−1 [
(σ + 1) tσij + (σ − 1)

]
dtij

D Derivation of Welfare Formula

In the following, we proceed to derive the welfare formula in second steps.

Step 1: Extensive Margin is zero

The expenditure function in country j takes the following form:

ej = min
xcij

∑
i

Ji

∫ ∞
ϕ∗ij

pij (ϕ)xcij (ϕ) gi (ϕ) dϕ (D.1)

s.t.

[∑
i

Ji

∫ ∞
ϕ∗ij

[(
qij (ϕ)xcij (ϕ) + x

)σ−1
σ − x

σ−1
σ

]
gi (ϕ) dω

] σ
σ−1

≥ Uj (D.2)

The Lagrange function can be written as:

ej =
∑
i

Ji

∫ ∞
ϕ∗ij

pij (ϕ)xcij (ϕ) gi (ϕ) dϕ+ ξ

Uj − [∑
i

Ji

∫ ∞
ϕ∗ij

u
(
qij (ϕ)xcij (ϕ)

)
gi (ϕ) dϕ

] σ
σ−1


(D.3)

where u
(
qij (ϕ)xcij (ϕ)

)
=
(
qij (ϕ)xcij (ϕ) + x

)σ−1
σ − x

σ−1
σ and ξ is the Lagrange multiplier.
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Taking the first order condition with respect to xcij(ω) yields:

pij (ϕ) = ξU
1
σ
j

(
qij (ϕ)xcij (ϕ) + x

)− 1
σ qij (ϕ) , (D.4)

By total differentiating the expenditure function ej, we have:

d ln ej =
∑
i

Ji

∫ ∞
ϕ∗ij

pij (ϕ)xcij (ϕ) gi (ϕ)

ej
d ln pij (ϕ) dϕ︸ ︷︷ ︸

Price Effect

+
∑
i

Jigi
(
ϕ∗ij
) [
pij
(
ϕ∗ij
)
xcij
(
ϕ∗ij
)
− σ

σ−1
ξU

1
σ
j u
(
ϕ∗ij
)]
dϕ∗ij

ej︸ ︷︷ ︸
Extensive Margin from Productivity Cutoff

+
∑
i

∫∞
ϕ∗ij
pij (ϕ)xcij (ϕ) gi (ϕ) dϕ− σ

σ−1
ξU

1
σ
j

∫∞
ϕ∗ij
u
(
qij (ϕ)xcij (ϕ)

)
gi (ϕ) dϕ

ej
dJi︸ ︷︷ ︸

Extensive Margin from Potential Firm Mass

−
∑
i

ξU
1
σ
j Ji

∫∞
ϕ∗ij

(
qij (ϕ)xcij (ϕ) + x

)− 1
σ qij (ϕ)xcij (ϕ) gi (ϕ)

ej
d ln qij (ϕ) dϕ︸ ︷︷ ︸

Quality Effect

=
∑
i

Ji

∫ ∞
ϕ∗ij

pij (ϕ)xcij (ϕ) gi (ϕ)

ej
(d ln pij (ϕ)− d ln qij (ϕ)) dϕ

where the second term “Extensive Margin from Productivity Cutoff” equals zero since xcij
(
ϕ∗ij
)

=

0 and the third term “Extensive Margin from Potential Firm Mass” also equals zero since the

potential firm mass Ji is constant. The second equality stems from equation (D.4).

Step 2: Proof of d ln ej =
(

1− ρ
1+ηθ

)
d lnλjj
ηθ

Based on equations (11), (13) and (21), we can rewrite Nij as:

Nij =
κβπ
fβX

biLi

[
ηη

(η − 1)η−1T
η−1
ij τijw

η
i

(
p̃∗j
)−η]−θ

(D.5)

where βX = βσ − β is a constant. This implies that

λjj =
Xjj∑
iXij

=
Njj∑
iNij

=
bjLj

(
T η−1
jj τjjw

η
j

)−θ∑
i biLi

(
T η−1
ij τijw

η
i

)−θ (D.6)

Without loss of generality, we use labor in country j as our numeraire so that wj = 1 before and

after the change in trade costs. Consider the foreign shocks: (Tij, τij) is changed to (T ′ij, τ
′
ij)
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for i 6= j such that Tjj = T ′jj, τjj = τ ′jj. Totally differentiating the previous equation implies:

d lnλjj =
∑
i

λijΛij (D.7)

where Λij = θηd lnwi + θηd lnTij + θ (d ln τij − d lnTij)

The expression of p̃∗j , together with equation (C.5) and (C.6), imply that:

d ln p̃∗j =
σ − 1

σ
d lnPjσ = −

∑
i

λijd lnNij

=
1

1 + ηθ

∑
i

λijΛij (D.8)

We define λij =
∫∞
ϕ∗ij
λij (ϕ) dϕ to denote the total share of expenditure on goods from country

i in country j and define λij (ϕ) =
Jipij(ϕ)xij(ϕ)gi(ϕ)∑

i Ji
∫∞
ϕ∗
ij
pij(ϕ)xij(ϕ)gi(ϕ)dϕ

to denote the share of expenditure

in country j on goods produced by firms from country i with productivity ϕ. According to the

equations (9), (12) and (D.8), the percentage change in expenditure satisfies:

d ln ej =
∑
i

∫ ∞
ϕ∗ij

λij (ϕ) (d ln p̃ij (ϕ)) dϕ

=
∑
i

∫ ∞
ϕ∗ij

λij (ϕ) (d ln c̃ij (ϕ) + d lnµ (ϕ)) dϕ

=
∑
i

λij

(
Λij

θη
− ρd ln

(
ϕ∗ij
) 1
η

)
=

∑
i

λij

(
Λij

θη
− ρ

(
Λij

ηθ
− d ln p̃∗j

))

=
∑
i

λij

(
Λij

θη
− ρ

(
Λij

ηθ
− 1

1 + ηθ

∑
i

λijΛij

))

=

(
1− ρ

1 + ηθ

)
1

ηθ

∑
i

λijΛij

=

(
1− ρ

1 + ηθ

)
1

ηθ
d lnλjj

where µ =
p̃ij(ϕ)

c̃ij(ϕ)
and the third equality is the same as Arkolakis et al. (2019). The markup

elasticity ρ =
∫∞
ϕ∗ij

λij(ϕ)

λij

d lnµ(v)
d ln v

dϕ, where v =
(

ϕ
ϕ∗ij

) 1
η
, satisfies:
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ρ =

∫ ∞
ϕ∗ij

p̃ij(ϕ)

p̃∗j

[(
p̃ij(ϕ)

p̃∗j

)−σ
− 1

]
gi

(
ϕ
ϕ∗ij

)
∫∞
ϕ∗ij

p̃ij(ϕ)

p̃∗j

[(
p̃ij(ϕ)

p̃∗j

)−σ
− 1

]
gi

(
ϕ
ϕ∗ij

)
d ϕ
ϕ∗ij

d lnµ (v)

d ln v
d
ϕ

ϕ∗ij

=

∫ ∞
1

µv−1
[
(µv−1)

−σ − 1
]
v−θη−1∫∞

1
µv−1

[
(µv−1)−σ − 1

]
v−θη−1dv

d lnµ (v)

d ln v
dv

µ is determined by σv−1 = (µv−1)
σ+1

+ (σ − 1)µv−1.

Consequently, the welfare gains associated with a small trade shock equals to−
(

1− ρ
1+ηθ

)
d lnλjj
ηθ

.

Here, we consider a generalized CES function with x > 0. If we assume that the utility func-

tion is CES function (i.e., x = 0), the markup is constant and ρ = 0. Now, the welfare gains

associated with a small trade shock become −d lnλjj
ηθ

.

If the model contains only variable markup but no endogenous quality and no Washing-

ton Apples mechanism, our model would be essentially identical to Jung, Simonovska and

Weinberger (2019). Now, the welfare gains associated with a small trade shock become

−
(
1− ρ

1+θ

) d lnλjj
θ

, where ρ =
∫∞

1

µv−1
[
(µv−1)

−σ
−1

]
v−θ−1∫∞

1 µv−1[(µv−1)−σ−1]v−θ−1dv

d lnµ(v)
d ln v

dv and µ is determined by

σv−1 = (µv−1)
σ+1

+ (σ − 1)µv−1.

E Supplementary Figure

Figure A.1: Sales and Markup Distribution
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Figure A.2: The relationship between market size and firm-level variables (prices, sales, and quality)
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Figure A.3: Illustration: the Changes in Prices and Sales by Low- vs. High-productivity Firms after
Trade Cost Shock

11.0051.011.0151.021.0251.031.0351.041.0451.05
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
10-3

-11

-10

-9

-8

-7

-6

-5

-4

-3

log-price
log-sales

22.012.022.032.042.052.062.072.082.092.1
-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

-1.16

-1.14

-1.12

-1.1

-1.08

-1.06

log-price
log-sales

Explanatory notes for Figure A.3:

The upper panel plots a low-productivity firm whose productivity is only 5% above the

cutoff productivity before the trade shock, i.e., ϕ
ϕ∗cj(ε)

= 1.05. When trade cost increases by

5% (either from τ or T ), ϕ
ϕ∗cj(ε)

goes to 1. Then, this producer starts to become a marginal

exporter. The left y-axis plots the change of log(price), and the right y-axis plots the change

of log(sales). Clearly, the variation in price changes is very small whereas the change in sales

is large. Next, we turn to a initially high-productivity firm with ϕ
ϕ∗cj(ε)

= 2.10 shown in the

lower panel. When it is hit by 5% increase in trade cost, the changes in log(price) is similar

comparing with the low-productivity exporter in the upper panel, but the change in log(sales)

is much smaller for this high-productivity firm.
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